JSON Interoperability in MIT App Inventor

Thoughts on Terseness Versus Learnability

Evan W. Patton
Massachusetts Institute of Technology
Cambridge, MA, USA
ewpatton@mit.edu

Abstract

Block languages abstract away the syntax of languages and
allow for people to focus on the semantics of a program. Text
languages, however, can make use of a variety of syntactical
sugar to provide abbreviated means of unpacking complex
data structures. We present a use case involving a complex
data structure in the JavaScript Object Notation and show
how nested elements would be accessed using the MIT App
Inventor platform. We then introduce a new block to show
how further abstractions within the blocks language can
simplify access while making it more readable, more compact,
and easier to construct.

Keywords mobile apps, JavaScript Object Notation, blocks

1 Introduction

One way in which one can bootstrap a mobile app is by
rendering content provided by a web-based Application Pro-
gramming Interface (API). The MIT App Inventor platform
has support for making web API calls, and for parsing the
results in different serializations, such as the JavaScript Ob-
ject Notation (JSON). However, manipulating the content
of these results has been limited to a small set of operators,
which can be chained together in complex ways to access
internals.

We introduce a use case to demonstrate the limitations
of MIT App Inventor with respect to handling JSON data
structures, and propose a new set of blocks that will aid in
accessing data in nested data structures from JSON-based
Web APIs. Further, we consider that manipulation of data
structures is a task better suited to text languages and seek
thoughts from the blocks-based programming community
on how terseness of the blocks representation may or may
not affect learnability of material.

2 Related Work

Most blocks language implement some basic form of ob-
ject that can be manipulated by blocks. Many of these have
a closed set of properties, such as App Inventor’s compo-
nents or Scratch’s sprites. However, some languages allow
for user-defined or open-ended sets of properties on objects

BLOCKS+, November 04, 2018, Boston, MA, USA
2018.

Danny Tang
Massachusetts Institute of Technology
Cambridge, MA, USA
data1013@mit.edu

Listing 1. JSON data for a hypothetical web APL

{
"data": {
"stations ": [{
"num_docks_available": 2
b A
"num_docks_available": 0
3]
}
}

in the language. For example, Gameblox! allows users to add
custom properties to sprites, which can be accessed in the
blocks. Thunkable X allows one to define types with closed
sets of properties. NetsBlox? allows users to define messages
with a fixed set of fields that can be passed between different
workspaces. GP* provides an implementation most similar
to the one we propose for MIT App Inventor, and allows for
setting and getting arbitrary keys on a dictionary instance.

3 Use Case: Processing Web API Response*

Lauren is a student who bikes to her university regularly
using a bike share. She finds that the bike share system
provides a JavaScript Object Notation (JSON) based API for
accessing status information about the stations in the system.
An abbreviated example is provided in Listing 1.

4 Example Blocks in App Inventor

Lauren uses MIT App Inventor to create an app to access
the bike share system’s data API and process it to signal
her when a dock is available near her destination. Given the
structure of the JSON, she composes the blocks structure
shown in Figure 1, based on an associative list representation
of the data. This method of decomposing the data structure
in order to access its internal elements requires 13 blocks.
It also requires understanding the type of the data at each
step in order to ensure that the correct "not found" value is

!https://gameblox.org

Zhttps://editor.netsblox.org/

Shttps://gpblocks.org/

“This use case idea was inspired by members of MIT App Inventor’s Master
Trainers group.

https://gameblox.org
https://editor.netsblox.org/
https://gpblocks.org/

BLOCKS+, November 04, 2018, Boston, MA, USA

num_bikes_available

look up in pairs key

pairs | select listitem list |

notFound |

index
notFound

look up in pairs key

Evan W. Patton and Danny Tang

look up in pairs key = “ GEE)”
[1@ - global response -
notFound | (%] create empty list
(0] makealist | (2] create empty list

pairs |

Figure 1. Recursive lookup over the data in Listing 1.

?) recursive look up in dict keys (2] makealist “CEZ)”

i num_bikes_available J&
dict I @) :[] global response ~ |
[T B not found ¢

Figure 2. Recursive lookup block that walks both dictionar-
ies and lists to retrieve the appropriate value. If at point the
lookup fails to find an item at the given key or index, the
“not found” value will be returned.

returned. If the wrong type is returned, a RuntimeException
will occur.

Later, she learns of a block called "recursive lookup in
dictionary" that is less verbose and updates her code to use it
(Figure 2). This new approach requires 8 blocks, a reduction
of 38%. A second benefit of this approach is that, while it
still requires "knowing" the types keys to use at each step
in the path from the root to the leaf, this information can
be gleaned from looking at the data structure. It does not
require knowing that if a lookup is to fail, it needs to return
a list versus a string, which is the case in first example.

Another benefit of the new block is that experimentation
is less painful. Changing the data structure or the path of
interest might require significant modification of the order
of lookup blocks (either "lookup in pairs” or "select item in
list"). However, for the latter set of blocks, reordering the
keys in the list is straightforward, as is extending the list
of keys to an arbitrary depth. Each additional step in depth
requires only a single block versus an additional three in the
first example.

5 Discussion

Text languages typically provide terse representations for
accessing complex data structures. For the example data
given in Listing 1, accessing the first station’s number of
bikes could be accomplished in JavaScript through the to-
ken sequence data.stations[@].num_docks_available.

While our approach in Figure 2 is still more verbose, it is
a marked improvement in expressivity over the version ex-
pressed given current capabilities in the language (Figure 1).

Further abstracting the blocks, while useful for the pur-
poses of reducing code complexity and space, still require
significant cognitive resources to reason about the abstrac-
tion, for example knowing at which steps an entity is a dic-
tionary or list, or what the next key or index is that needs to
be processed. We could further reduce the barrier to entry
of integrating JSON-based web APIs by enabling the devel-
oper to visually explore the data structure and dynamically
build the blocks for "querying" the data structure in a more
visually connected way, for example, by greying out the
areas of the structure not returned by the given key path.
The introduction of new visual editors or exploratory tools
for complex data structures that internally map the logic to
blocks may make it even easier for developers to specify the
path(s) through data.

Another complex operator for consideration would be the
concept of “any” or “all” special blocks that allow the code to
select the first (or random) entity or enumerate all entities for
the purposes of extracting whole chunks of data matching a
similar path. In essence, they would wrap functions such as
“random” or “map” without needing to explicitly introduce
these concepts into the language.

6 Conclusion

We presented a use case for manipulating data provided by
a web API in the JSON serialization. We contrasted two dif-
ferent approaches to accessing the same data in an app built
with MIT App Inventor. Even with these representations, text
approaches are shorter and potentially easier to understand
than their blocks-based equivalents. Further, these blocks
make it easier to interact with existing infrastructure, which
can help with bootstrapping larger, more complex projects.
We recommend that the blocks programming community
further explore other representations for manipulating data
structures like JSON in blocks.

	Abstract
	1 Introduction
	2 Related Work
	3 Use Case: Processing Web API ResponseThis use case idea was inspired by members of MIT App Inventor's Master Trainers group.
	4 Example Blocks in App Inventor
	5 Discussion
	6 Conclusion

