
CTE2017

Enabling Multi-User Computational Thinking with Collaborative Blocks

Programming in MIT App Inventor

Xinyue Deng1, Evan W. Patton1*
1 Massachusetts Institute of Technology, Cambridge, MA, USA

{dxy0420, ewpatton}@mit.edu

ABSTRACT

Collaboration becomes increasingly important in

programming as projects become more complex. With

traditional text-based programming languages,

programmers typically use a source code management

system to manage the code, merge code from multiple

editors, and optionally lock files for conflict-free editing.

There is a limited corpus of work around collaborative

editing of code in visual programming languages such as

block-based programming. We propose an extension to

MIT App Inventor, a web-based visual platform for

building Android applications with blocks, which will

enable many programmers to collaborate in real-time on

MIT App Inventor projects. We take the position that

real-time collaboration within MIT App Inventor will

encourage students in a group environment to interact

with one another in ways that help them improve each

other’s understanding and practice of computational

thinking practices that may not be achieved in the

traditional one user-one project paradigm that is currently

provided.

KEYWORDS

Real-time collaboration, App Inventor, visual

programming, computational thinking

1. INTRODUCTION
Cloud-based collaborative technologies such as Google

Docs have become a central part of how teams work

together to collaborate in real time on all manner of

content. While real-time collaboration for programming

has been explored in research settings, a typical editing

pattern in software development involves developers

working separately and then merging their changes

through a source code management system, such as

Subversion or Git. These solutions work well for textual

programming languages. However, little work has been

done exploring real-time collaborative techniques for

visual programming languages, including blocks-based

languages including Scratch (Maloney, Resnick, Rusk,

Silerman, & Eastmond, 2010) and MIT App Inventor

(Wolber, Abelson, Spertus, & Looney, 2011). The

remainder of this paper will focus on the challenges and

possible benefits of real-time collaboration as they relate

specifically to the MIT App Inventor software.

MIT App Inventor is a web-based platform for building

mobile phone applications targeting Android. It provides

two editors for building an application: a designer where

users drag and drop components, such as buttons, to lay

out the user interface of an application, and the blocks

editor where program logic is provided using a puzzle

block-like language based on Google’s Blockly. MIT App

Inventor users require a Google account to identify

themselves to the service and projects are tied to these

accounts. While it is possible to perform group

collaboration in MIT App Inventor given its current

implementation, this is usually accomplished by student

groups creating a shared Google account and trading off

control over who is editing using the single account.

We propose a collaborative programming environment

within the MIT App Inventor software that will enable

multiple users to engage in computational thinking in a

real-time collaborative manner. Section 2 describes the

related work in computational thinking and collaborative

programming. Section 3 illustrates our design and

implementation of the collaborative environment. Section

4 presents a discussion that how this system can help users

engage in computational thinking.

2. RELATED WORK
Brennan & Resnick (2012) gauge computational thinking

with respect to three categories: computational concepts,

computational practices, and computational perspectives.

They defined “Connecting” as one of the computational

perspectives, which involves programming with others

and programming for others. By collaboration,

programmers are able to accomplish more than what they

could have on their own.

With text-based programming languages, programmers

usually collaborate with a version control system, such as

Git. Guzzi, Bacchelli, Riche, and Van Deursen(2015)

presented an improved IDE with support of version

control system to help programmers to resolve conflicts

and detect problems introduced by others’ code. Other

than version control system, Goldman, Little, & Miller

(2011) demonstrated a real-time collaborative web-based

editor for the Java programming language.

Collaboration in blocks-based programming languages

has typically been done via remixing, such as in the

Scratch language (Maloney et al., 2010) and MIT App

Inventor (Wolber et al., 2011). In remixing, a developer

publishes an application publicly and others use it as a

starting point for a new application. This remixing

behavior makes iterate development between two

developers more difficult because the project, rather than

some subset, is the basis for remixing.

Greenberg & Gutwin (2016) highlight key challenges in

enabling awareness in collaborative environments. We

leverage their findings by codifying awareness

information via the locking mechanisms proposed in

Section 3. These locking mechanisms allow users to direct

awareness of their peers by synchronizing access to the

CTE2017

environment on a per-user basis. Gross (2013) provides a

more in-depth review of awareness research.

3. DESIGN AND IMPLEMENTATION
Our collaboration system is mainly designed for group

course projects of 2-4 students in middle school, high

school, or college. The system will satisfy the following

features:

1. Users are identified by their email address and share

projects with others by email address. The user who

creates the project can change others’ access level of

the project. The access level includes read, in which

users can only view the project, and write, in which

users can both view and edit the project.

2. Users can know who is currently working on the

project, and the components or blocks that each

individual is currently working on.

3. User can see others’ changes simultaneously. There

are several cases in MIT App Inventor:

a. When users work on different screens, their

changes will not be shown until switching

screens.

b. When users work on the same screen, and they

work on the same editor, they can see the others’

change immediately on the editor.

c. When two users work on the same screen, and

one works on the designer editor, and the other

works on the blocks editor, the one on the blocks

editor can see new blocks when the one on the

designer editor adds a new component. When the

one on the designer editor removes a component,

the other will see blocks related to that

component disappear.

Figure 1. Share project by entering user’s email address

3.1. User Interface Design

A user can share a project with others by providing their

email address. Figure 1 shows the user interface of sharing

a project. Once the project is shared successfully, the other

user can find the project in her project explorer. Users can

know who has opened the project by the colored square in

the project title bar. When user hovers on the square, it will

show the user’s email address. The color of the square

indicates the user’s color. It is used to identify which part

of the program a user is editing.

Figure 2. An example of collaborative block-based

programming in MIT App Inventor. This project is shared

within four users. The user can see the other three users,

A, B and C, on the project title bar. The block that each

user is editing is highlighted with the user’s color.

3.2. Collaboration Server

In order to show others’ changes immediately, we use

publish-subscribe pattern to send updates from one user to

others. Publish-subscribe pattern is a messaging pattern,

where senders can send messages to a channel, and

receivers who subscribe to that channel can receive the

messages. We decided to build a NodeJS server for web

clients to communicate about collaboration, which runs

separately from the MIT App Inventor server, so it is easy

to be managed. MIT App Inventor clients connect the

collaboration server with sockets. We use Redis, an open

source library for in-memory data structure store and

publish-subscribe pattern, to publish and subscribe

updates (Redis Contributors 2017), and all messages will

be in JSON format. The client will translate changes into

JSON documents and send them to the collaboration

server over a specified channel. The server will apply

operational transformations on JSON documents to make

sure changes are published consistently to all subscribed

clients. Then, clients translate JSON document into events

that update the code and run the events on their individual

systems. Therefore, the copies of the code of all clients

will eventually be identical.

3.3. Channels

Each MIT App Inventor client is both publisher and

subscriber in the system. Clients will subscribe to three

kinds of channels:

1. User channel: The user channel is specified by the

user email address. Each client subscribes to only one

user channel. When users share a project, they publish

the project and user information to others’ user

channel. Therefore, other users will be notified that a

user shares a project with them, and that project will

appear in their project list.
2. Project channel: Project channel is specified by

project id. (Each MIT App Inventor project has an id

that is unique to the MIT App Inventor server.) When

a collaborator opens a project, he will subscribe to that

project channel. This channel is used for project-level

messages, such as when other collaborators open or

close the project, or when components are added,

modified or removed. When a collaborator publishes

CTE2017

changes to the project channel, all active collaborators

on that project will be notified.
3. Screen channel: The screen channel is specified as

combination of the project id and the screen name.

This channel is used to publish changes about blocks.

Each screen has its set of blocks. Users subscribe to

this channel when they open the block editor of a

screen. After subscribing this channel, all changes

related to blocks in this screen will be published to the

channel.

4. DISCUSSION

The collaborative programming environment within MIT

App Inventor provides users a new approach to teach and

learn. For example, it enables “teacher-student” or

“mentor-mentee” roles inside MIT App Inventor.

Teachers can share the projects with students in read-only

mode to demonstrate ideas and demos. Students can work

on group projects after school, because they can

collaborate remotely. As MIT App Inventor is built for

students and novice programmers, the collaborative

programming environment gives them an opportunity to

develop their teamwork skill at an early stage. Also,

while developing applications collaboratively, users can

learn how to resolve conflicts.

This new collaboration mechanism for MIT App Inventor

touches on all four of the key computational thinking

practices of Brennan and Resnick (2012). Multiple users

can incrementally and iteratively build small units either

in isolation or together depending on the complexity of the

tasks and expertise of the individuals. Users can explore

different debugging techniques to assist one another in

addressing problems in the code. Reuse and remix of code

can happen on a much finer time granularity on the order

of seconds or minutes. Lastly, users can work together to

help one another understand and exploit abstraction and

modularization techniques within a program.

One challenge for collaborating with visual programming

language is that it is hard to understand others’ thought

process. With the text-based programming language,

programmers can know others’ plan via comments.

However, it is hard to place comments in visual

programming environment without disrupting actual

programming logic. One way we can handle it is to add a

screen for comments, so users can toggle the comments

screen as they need. Another way to help users to

understand others is adding a communication channel, so

that users can exchange their ideas while they are

programming.

Our technical approach is not restricted to MIT App

Inventor, as it builds on Google’s Blockly. It can therefore

be applied to other visual programming languages, such as

Scratch. It is easy to integrate socket and publish-subscribe

pattern into the system.

5. CONCLUSIONS
We presented a collaborative programming environment

within the MIT App Inventor software and provided

technical details of an implementation of real-time

collaboration. In future work, we will evaluate the

effectiveness of the collaboration with novice and expert

users of MIT App Inventor to better understand how

students use the system to collaborate.

6. REFERENCES
Brennan, K., & Resnick, M. (2012, April). New

frameworks for studying and assessing the

development of computational thinking. In

Proceedings of the 2012 annual meeting of the

American Educational Research Association,

Vancouver, Canada (pp. 1-25).

Goldman, M., Little, G., & Miller, R. C. (2011, October).

Real-time collaborative coding in a web IDE. In

Proceedings of the 24th annual ACM symposium on

User interface software and technology (pp. 155-164).

ACM.

Greenberg, S., & Gutwin, C. (2016). Implications of we-

awareness to the design of distributed groupware

tools. Computer Supported Cooperative Work

(CSCW), 25(4-5), 279-293.

Gross, T. (2013). Supporting effortless coordination: 25

years of awareness research. Computer Supported

Cooperative Work (CSCW), 22(4-6), 425-474.

Maloney, J., Resnick, M., Rusk, N., Silverman, B., &

Eastmond, E. (2010). The scratch programming

language and environment. ACM Transactions on

Computing Education (TOCE), 10(4), 16.

Redis Contributors (2017). Redis Publish-Subscribe

message pattern. Retrieved February 4, 2017 from

https://redis.io/topics/pubsub.

Wolber, D., Abelson, H., Spertus, E., & Looney, L.

(2011). App Inventor. O'Reilly Media, Inc.

Guzzi, A., Bacchelli, A., Riche, Y., and Van Deursen, A.

(2015). Supporting Developers' Coordination in the

IDE. Proceedings of the 18th ACM Conference on

Computer Supported Cooperative Work & Social

Computing - CSCW '15

https://redis.io/topics/pubsub

