
Android Game Development with AppInventor 
 

by 
 

Anshul Bhagi 
S.B EECS MIT 2011 

 
Submitted to the Department of Electrical Engineering and Computer Science 

in Partial Fulfillment of the Requirements for the Degree of 
Master of Engineering in Electrical Engineering and Computer Science 

at the Massachusetts Institute of Technology 
 

May 23, 2012 
©2012 Massachusetts Institute of Technology 

All rights reserved. 
 

Author: 
 
 
------------------------------------------------------------------------------------------------------------ 

Anshul Bhagi 
Department of Electrical Engineering and Computer Science 

 
Certified 
by: 
 
 
------------------------------------------------------------------------------------------------------------ 

Prof. Hal Abelson 
Class of 1992 Professor of Computer Science and Engineering  

MIT Department of Electrical Engineering and Computer Science 
Thesis Supervisor 

 
Accepted 
by: 
 
 
------------------------------------------------------------------------------------------------------------ 

Prof. Dennis M. Freeman 
Chairman, Masters of Engineering Thesis Committee 



 Chapter 1-2 

Android Game Development with AppInventor 
 

Abstract 
 

Anshul Bhagi1 
Department of Electrical Engineering and Computer Science 

 
AppInventor is an educational learning tool provided by MIT that allows users 
to build Android apps without any knowledge of programming. As AppInventor 
gains popularity amongst educators and students around the world, it will 
become increasingly important to ensure that the tool offers its users the 
breadth and depth of app-development functionality they desire. In anticipation 
of AppInventor's expanding role and influence in educational institutions 
worldwide (middle schools and high-schools, primarily), this thesis focuses on the 
age group of 3rd to 12th grade students, and on the topic that is of greatest 
interest to them: gaming, animation, and graphics.  
 
The aim of this thesis is to identify AppInventor's existing capabilities and 
limitations with respect to game development, and to implement ideas (both 
pedagogical and technological in nature) that will improve the diversity, 
complexity, aesthetic appeal, and performance of games that can be built using 
AppInventor. The author of this thesis believes that if AppInventor's game 
development capabilities can be augmented, the adoption rate of the tool and its 
popularity amongst school students will be impacted very positively. 
 
In this thesis, the author describes his personal experiences teaching 
AppInventor game development in India and USA, as well as the limitations (in 
teaching methodology and in AppInventor's feature set) that he identified 
through this experience. The author's primary contributions are the development 
of a hands-on curriculum for a 40-hour AppInventor Game Development course, 
and the implementation of several new features and components for 
AppInventor. The author will be traveling to China and India in Summer 2012 
to test to what extent his creative curriculum and novel AppInventor 
modifications facilitate the development of games using AppInventor. 
 

                                     
1 abhagi@mit.edu 

 



 Chapter 1-3 

Table of Contents 
 

Chapter 1: Introduction and Overview                                                  4 
About AppInventor                                                                                          5 
Why AppInventor Should Support Game Development                                           5 
Game Development with AppInventor today                                                         6 
Author's approach to improving AppInventor's game development capabilities             8 
 

Chapter 2: Original Curriculum                                                           9 
Curriculum Overview                                                                                      10 
Day 1                                                                                                           11 
Day 2                                                                                                           16 
Day 3                                                                                                           26 
Day 4                                                                                                           30 
Day 5                                                                                                           31 
 

Chapter 3: Teaching Experiences and Lessons Learned                           34 
Teaching in Bangalore, India                                                                            35 
Teaching in Boston                                                                                        36 
Pictures of Student Projects                                                                             37 
Lessons Learned                                                                                            38 
 

Chapter 4: Modifications to AppInventor                                             41 
Four Modifications                                                                                         42 
Precise Handling of Touch Events                                                                      42 
Fling Gesture Detection                                                                                   45 
The AnimatedSprite Component                                                                       46 
The ProximitySensor Component                                                                      47 
 

Chapter 5: Modified Curriculum                                                        48 
Curriculum Overview                                                                                      49 
Media Library                                                                                               50 
AppInventor Flashcards                                                                                  51 
Day 1                                                                                                          61 
Day 2                                                                                                          66 
Day 3                                                                                                          79 
Day 4                                                                                                          83 
Day 5                                                                                                          84 
 

Chapter 6: Future Plans and Suggestions                                87 
Suggested Feature Additions                                                                            88 
Future Plans and Experiments                                                                         91 
 

Chapter 7: Contributions and References                                 92 



 Chapter 1-4 

Chapter 1  
Introduction & Overview 

 



 Chapter 1-5 

About AppInventor. 
 
AppInventor is a web-based tool developed jointly by MIT and Google to enable 
the creation of Android apps via a visual, block-based development environment 
that requires no prior knowledge of programming languages. Since its conception, 
AppInventor has gained popularity amongst educators as a learning tool for 
fundamental concepts in computer science, and more importantly, as a medium 
through which students can exercise creativity and practice innovation. 
AppInventor (along with its peer applications at MIT such as Scratch and 
StarLogo) has empowered a whole new age group (specifically, elementary and 
middle school students) to create applications for android phones -- a task that 
had previously been impossible due to the numerous demands and requirements 
of the Android app creation process (knowledge of Java, comprehension of 
computer science principles, and familiarity with software development tools and 
environments such as Eclipse, the Android SDK, Android Developer Bridge, etc.). 

Why AppInventor should support 
game development. 
 
Ever since AppInventor found a new home at MIT's Center for Mobile Learning 
in early 2012 (it was previously housed at Google), it has been receiving 
significant attention from educational communities that hope to use the tool to 
facilitate technology learning in the classroom and beyond. Much of 
AppInventor's current user base is teachers in high-schools and colleges, and as 
the tool continues to attract more users, it is likely that many of these users will 
be teachers of students in grades 3 thru 12 (i.e. students who are old enough to 
know how to use computers and design/develop apps, yet not experienced 
enough to get their hands dirty with the Android SDK). Students of this age 
group are quite fond of gaming, and so we anticipate that there will be a strong 
demand for developing graphically appealing, interactive single-player and multi-
player games using App Inventor in the coming years. 
 
It is therefore important that the AppInventor team at MIT prepare for the 
imminent growth of the AppInventor game development community. 
Accordingly, this thesis looks at where AppInventor currently stands with 



 Chapter 1-6 

respect to game development and how its game development capabilities can be 
improved and extended. 

Game development with AppInventor 
today. 
 
Developing games with AppInventor's existing feature set is very much a 
possibility, and in fact the process is quite easy to learn, thanks to AppInventor's 
intuitive interface and the numerous tutorials (e.g. PaintPot, QuizMe, 
MoleMash) available online at beta.appinventor.mit.edu/learn/tutorials. 
 
In particular, the following AppInventor components prove quite useful for the 
task of developing games: 
 
Buttons: 
These are perhaps the simplest way in which a game developer can get input 
from the game player. Buttons can be used to create a joystick (with controls for 
moving up, down, left, right), and to perform any other actions in response to a 
button click.  
 
Canvas: 
Canvas components are useful for multiple reasons. First, they are the 
component where game objects are drawn -- shapes such as rectangles, ovals, etc. 
can be drawn on these using the methods provided by AppInventor in the 
Blocks Editor, and images can be uploaded as backgrounds. Second, they are 
containers for other components known as sprites (described below), and provide 
a set of bounds within which sprite objects can be drawn and moved around. 
Third, Canvas objects can be used as a source of touch-input, and they provide 
a "dragged" and "touched" event that the app developer can respond to. 
Fourth, these objects can be used as a spacing mechanism in layouts, e.g. if a 
developer wishes to center a button on the screen, he/she can add an 
empty/transparent canvas on each side within a Horizontal Layout, and set the 
width property of each canvas to "fill parent" -- magically, the end result will be 
the centering of the button or whatever other object is between the two outside 
canvases. 
 
 
 



 Chapter 1-7 

Clock: 
Clocks are instrumental for game development since they are the time-keepers. 
They have an Interval property which the game developer can define and modify 
at any time, and they fire an event after each interval expires. The game 
developer can easily react to the firing of these clock timer events in the Blocks 
Editor in order to perform certain tasks (such as updating the location of a 
Sprite) every few milliseconds. 
 
Sound: 
Sound effects are easy to add in App Inventor and can make a significant impact 
on perceived game quality. The 'Sound' component is an invisible component 
that allows the developer to easily select a source sound file and to easily play 
this file in response to other actions from the Blocks Editor. 
 
Ball: 
The ball component is perfect for games that actually require balls that need to 
move around on a canvas. The ball component supports rectangle-based collision 
detection and implements the physics of ball movement/bouncing. The game 
developer can provide it a direction (called a heading), a speed, a radius, and the 
time interval the ball should wait between each pair of movements. 
 
ImageSprite:  
Sprites are a fundamental part of any game that requires animation or motion. 
They are essentially more generic 'ball' components in that they can be visualized 
by any image that the developer uploads (animated gifs not supported). They 
support rectangle-based collision detection and are restricted to movement 
within the bounds of the canvas in which they reside (they can't go off-screen). 
 
GameClient: 
This component is the foundation for building multi-player games with 
AppInventor. It allows for web-based communication between multiple clients 
(phones) and a single game server that the game developer deploys 
independently. 
 



 Chapter 1-8 

Author's approach to improving 
AppInventor's game development 
capabilities. 
 
The goal of this thesis is to identify AppInventor's existing capabilities and 
limitations with respect to game development, and to implement ideas (both 
pedagogical and technological in nature) that will improve the diversity, 
complexity, aesthetic appeal, and performance of games that can be built using 
AppInventor. The author adopted the following iterative hands-on approach to 
understanding how AppInventor could be improved for game development: 
 

 
 
The remainder of this report describes each step of this process in detail. 
Chapter 2 describes the original curriculum; Chapter 3 communicates the 
experience of teaching AppInventor in India and Boston and describes the 
learning that emerged from this experience; Chapters 4 and 5 address 
modifications to AppInventor and to the curriculum, respectively; Chapter 6 
addresses future plans and suggests additional features that should be added to 
AppInventor, and Chapter 7 summarizes the contributions of this work. 

Develop	
  Initial	
  Curriculum	
  for	
  AppInventor	
  
Game	
  Development	
  Course	
  (Fall	
  2011)	
  

Teach	
  Game	
  Development	
  Course	
  at	
  schools	
  in	
  
Bangalore	
  (India)	
  and	
  Boston.	
  (Winter	
  2011)	
  

Identify	
  Limitations	
  in	
  AppInventor	
  as	
  well	
  as	
  
in	
  the	
  initial	
  curriculum	
  (Winter	
  2011)	
  

Refine	
  the	
  curriculum,	
  and	
  add	
  new	
  features	
  
and	
  components	
  to	
  AppInventor	
  that	
  would	
  
facilitate	
  game	
  development.	
  (Spring	
  2012)	
  

Test	
  refined	
  curriculum	
  and	
  augmented	
  
AppInventor	
  feature-­‐set	
  by	
  teaching	
  Game	
  
Development	
  in	
  India	
  and	
  China	
  (June	
  2012).	
  



 Chapter 2-9 

Chapter 2  
Original Curriculum 

 



 Chapter 2-10 

Curriculum Overview 
 
 Planned Activities Concepts Learned 

Day 1  
(8 hrs) 

Ice Breakers 
Playing with Android Phones 
AppInventor Setup 
Overview of AppInventor's interface 
Project 1: HelloPurr and Media Player 
Project 2: Calculator 

Sound, Button, Screen, event handling, 
calling procedures, connecting to device, 
Player, screen arrangements, Label, 
TextBox, getting and setting property 
values, if-else statements, packaging apps 
to phone 

Day 2  
(8 hrs) 

Project 3: Drawing Program 
Project 4: Balls, Sprites, and Motion of 
Objects 
4 ways to make things move (automatically; 
using Clock, using Buttons, using 
Accelerometer) 

Canvas, handling 'dragged' and 'touched' 
events, drawing lines and circles, colors, 
Ball, ImageSprite, making objects move, 
edge-detection, bouncing ball, defining 
custom variables, defining custom 
procedures, Accelerometer 

Day 3 
(8 hrs) 

Project 5: Car on a Road 
Project 6: Paper Prototyping 
Begin final project (game of student's 
choice) 

collision detection, random-number 
generation, making multiple objects move 
simultaneously using Clock,  

Day 4 
(8 hrs) 

Continue final project (game of student's 
choice) 

Instruction on Day 4 will be one-on-one 
and highly customized to each student's or 
group's needs. 

Day 5 
(8 hrs) 

Publishing AppInventor apps to Google 
Play 
Continue final project (game of student's 
choice) 
Presentations of final projects 

Google Play developer registration process, 
downloading AppInventor apps as .apk 
files, uploading .apk files to Google Play. 
The remainder of the learning on Day 5 
will be customized to each student's or 
group's needs. 



 Chapter 2-11 

Day 1 
 
Begin with ice breakers (nicknames, fun facts, what you want to learn, why you 
enrolled in course, etc.) 
 
Hand out phones and connector cables, allow students to play around with and 
get a feel for the devices. Attract their attention to the Google Play application 
(formerly known as the Market) on the Android phones and excite them about 
the prospect of publishing their own application to Google Play (to be discussed 
on Day 5). 
 
Ask students to perform AppInventor setup, following the instructions at 
http://beta.appinventor.mit.edu/learn/setup/.   
 
Walk them through the basics of AppInventor's interface (designer view, palette, 
properties panel, visible vs. non-visible components, and blocks editor). 
 

Project 1: HelloPurr and MediaPlayer 
 
Start with simple "HelloPurr" app to introduce Sound, Button, Screen 
components and event handling. 
 

 
 



 Chapter 2-12 

Describe the difference between events and procedures (also known as 
functions) in the context of HelloPurr. Button1.Click is a handler for an event, 
whereas Sound1.Play is a procedure. 
 
Explain how to connect to device from the BlocksEditor, so that students can 
test their HelloPurr apps on their devices. 
 
Students should partner up and modify their HelloPurr app to turn it into a 
Media Player with play and stop buttons. Also, introduce the Player 
component here, which can play long songs, whereas the Sound component from 
the HelloPurr app could only play short sounds.  
 
Introduce the concept of layouts + screen arrangements. Show the students 
how to put the Play button and the Stop button on the same line by inserting 
both of them into a HorizontalArrangement component. Show the students 
how to center the buttons by adding empty components (such as Canvas or 
Label) on the left and right side of the HorizontalArrangement so that they 
serve as spacers. 
 

 
 

 



 Chapter 2-13 

Extra	
  Credit:	
  Add	
  a	
  pause/resume	
  button,	
  in	
  addition	
  to	
  the	
  play	
  and	
  stop	
  
buttons.	
  Student	
  may	
  choose	
  to	
  have	
  the	
  'resume'	
  state	
  of	
  the	
  pause-­‐resume	
  
button	
  look	
  different	
  from	
  the	
  'pause'	
  state	
  -­‐-­‐	
  if	
  this	
  is	
  the	
  case,	
  teach	
  them	
  how	
  to	
  
change	
  the	
  button's	
  background	
  image	
  when	
  the	
  button	
  is	
  pressed,	
  by	
  setting	
  the	
  
"Picture"	
  property	
  to	
  a	
  string	
  representing	
  the	
  filename	
  of	
  the	
  new	
  button	
  image.	
  

 

Project 2: Calculator 
 
Introduce students to Textbox and Label components, and ask them to use 
these along with HorizontalArrangements and Buttons to produce the interface 
for a two-number adder that looks as follows. 
 

 
 
 
 
 



 Chapter 2-14 

The goal of this adder is to add the two numbers typed in by the user and to 
indicate their sum in the result text box when the 'add' button is pressed. 
 
As the students implement this functionality in the Blocks Editor, they will learn 
about properties of components, and will learn to get and set their value. 
 

 
 
Students should work individually to modify this adder and turn it into a 
calculator that can do all four operations on two numbers. The students should 
use screen arrangements to make this look nice, see below for a screenshot: 
 

 
 
 
After the students have implemented the interface, ask them to follow the model 
of the adder they previously constructed to implement the subtraction, 
multiplication, and division operations. 
 



 Chapter 2-15 

 
 
Next, teach students about basic control structures, specifically if-else 
statements. Ask students to use if statements to prevent division by zero. Here 
is one way of doing this: 
 

 
 
 
 



 Chapter 2-16 

Extra	
  Credit:	
  Ask	
  students	
  that	
  finish	
  early	
  to	
  style	
  their	
  calculator	
  by	
  changing	
  
background	
  color	
  /	
  images	
  of	
  the	
  screen,	
  buttons,	
  textboxes,	
  or	
  other	
  components.	
  

 
 
Once all students are caught up, teach how to package appinventor apps to the 
phone so that the app can run on the phone without requiring the phone to 
remain connected to the computer. Ask students to package their calculators and 
their MediaPlayer apps  and to download these to their Android devices. 
 

 

Day 2: 
Project 3: Drawing Program 
 
Introduce Canvas component as the fundamental container component for 
graphics (drawings, images, sprites, etc.). 
 
Build a simple drawing application where user drags on the canvas to draw lines 
and can clear canvas by clicking the clear button. 
 

 
 



 Chapter 2-17 

Show how to set the drawing color of canvas when screen (application) gets 
initialized, and how to handle dragged events. 
 

 
 
Ask students to modify the drawing program to include buttons to set the 
drawing color of the application, and to draw circles in response to touched 
events. 
 
 

 
 
 



 Chapter 2-18 

 
 
If students finish early, ask them to make a beautiful picture using your drawing 
app, like this one: 
 

 
 
The student with the best drawing wins a chocolate :) 



 Chapter 2-19 

Project 4: Balls, Sprites, and Motion of Objects 
 
Introduce the Ball component as one of two Sprite components in AppInventor 
that have the ability to move around on a canvas. The second sprite component 
is ImageSprite, which is similar to a ball in that it can be moved around on a 
canvas, but it is visually represented by a custom Image that is uploaded by the 
AppInventor developer. 
 
There are many ways to make Balls and ImageSprites move, but in this course 
we'll discuss the four of them (listed below) that are most applicable to game 
development: 
 
1) Automatically (using built-in properties) 
2) Using buttons 
3) Using the AppInventor Clock component 
4) Using Accelerometer 
 
Motion Method 1: Automatically 
 
Introduce sprite properties such as Heading, Speed, X, Y, and Interval that 
are required for automated motion of the sprite, and show students how to set 
these properties from the Properties panel in the Designer view. Create a simple 
app where the ball bounces around the screen, using the 'EdgeDetected' event 
handler and the 'Bounce' procedure in the blocks editor. 
 

      
 



 Chapter 2-20 

Then, ask the students (individually) to replace the ball with an ImageSprite, 
using an image of their choice (e.g. a fancy ball image from Google), but make it 
do the same sort of bouncing around using 'edge detected'. 
 

         
 
 
Motion Method 2: Button-controlled ball motion: 
 
Ask students to create an AppInventor project with a single ball on a canvas 
and left/right buttons below the canvas, as shown below: 
 

 
 



 Chapter 2-21 

In order to make the ball move, we will update the ball's x position as the left 
and right buttons are pressed. The amount of pixels that we move the ball each 
time the buttons are clicked is known as the ball's speed (in the x direction). 
 
Introduce the concept of variables, and discuss how to define your own, and 
how to access and set their value. Then, ask students to create a variable 
representing the speed of the ball in the x direction. The blocks code for making 
the ball move then looks as follows: 
 

 
Ask students to extend this app for up and down motion controlled by up and 
down arrows: 
 

 
 



 Chapter 2-22 

 
 
 
Motion Method 3: Using the AppInventor Clock component 
 
Introduce the Clock component, which is a timer that fires every few 
milliseconds (as specified by the TimerInterval property, which can be set 
either in the designer view or in the blocks editor).  
 
Ask students to create a new project with a Ball, Canvas, and Clock (which will 
show up below the screen as a non-visible component). 
 

 



 Chapter 2-23 

We now make the ball move up a few pixels (as determined by the value of the 
speed variable) every time the timer fires. Once the ball reaches the top of the 
screen, we ask the timer to stop firing, and we wait for the user to click the 
'restart' button. Clicking the restart button causes the ball to reset its location 
to the bottom of the screen and turns on the timer once again. 
 
We use this opportunity to teach how to define and call your own procedure, 
by turning the 'restart' action into its own procedure. The blocks code is shown 
below: 
 

 
 
 



 Chapter 2-24 

Motion Method 4: Using the Accelerometer 
 
The Accelerometer is a built-in sensor in Android devices that senses changes in 
acceleration. Here, we use the accelerometer to make the ball move left and right 
as the phone is tilted left and right, hence avoiding the need for buttons and 
other forms of tactile input. 
 

 
 
If students finish early, ask them to extend the program to also detect 
acceleration changes in the y direction (to move the ball up and down): 
 

 



 Chapter 2-25 

Extra	
  Credit:	
  Students	
  will	
  note	
  that	
  while	
  the	
  above	
  code	
  works,	
  the	
  motion	
  of	
  
the	
  ball	
  is	
  not	
  smooth.	
  In	
  order	
  to	
  achieve	
  smooth	
  motion,	
  students	
  should	
  use	
  the	
  
Clock	
  component	
  in	
  conjunction	
  with	
  the	
  Accelerometer	
  sensor,	
  following	
  the	
  
steps	
  below.	
  

 
Smooth Motion Step 1: Add a Clock component to the project. In the below 
screenshots, the clock is called "smoothMotionClock". 
 
 

 
 
Smooth Motion Step 2: In the blocks code, create variables for speed in the x and 
y direction, initialize the clock's timer interval in the Screen's Initialize event, and 
handle the clock's Timer event by updating the ball's x and y location by the 
appropriate speed variables. 
 

 
 
 
 
 
 
 



 Chapter 2-26 

Smooth Motion Step 3: Inside the AccelerometerSensor component's 
AccelerationChanged event handler, instead of updating the ball's position as 
you did in the non-smooth version of this application, simply set the value of the 
x and y speed variables. Now, the ball's position will be updated by the Clock 
timer and will be unaffected by factors such as how quickly the phone is tilted, 
resulting in regular and smooth motion. 
 
 

 

Day 3: 
Project 5: Car on a Road 
 
Review previous day's material -- Canvas, Drawing, and motion of sprites -- by 
building a simple game where a car (represented by an ImageSprite) moves left 
and right on a road (a Canvas with an image as a background): 
 



 Chapter 2-27 

 
 
The students may implement the motion of the car using either the Clock 
component, buttons, or the accelerometer. 
 
Using this same project as a starting point, introduce students to collision 
detection, a very useful facet of game development. Ask them to add one or 
more obstacles (ImageSprite objects) onto the road, e.g. the banana and the cow 
in the following image: 
 

 
 
 
 
 
In the blocks code, ask students to insert if-statements (right after the code that 
updates the car's position) to check if the car is colliding with other obstacles: 



 Chapter 2-28 

 

 
 
Next, introduce students to random-number generation by showing them 
how to make the obstacles on the road appear in random (x,y) coordinate 
locations using the random integer procedure to pick random values for x and y. 
 
In the below blocks code, the Cow's x value is picked randomly from within the 
range [0, 300] and the y value is picked randomly from the range [0, 400]: 
 

 
 

Extra	
  Credit:	
  If	
  students	
  finish	
  early,	
  have	
  them	
  attempt	
  to	
  complete	
  this	
  car	
  
obstacle-­‐avoidance	
  game	
  by	
  animating	
  the	
  obstacles	
  such	
  that	
  they	
  appear	
  at	
  the	
  
top	
  of	
  the	
  screen,	
  move	
  from	
  top	
  to	
  bottom,	
  and	
  then	
  reset	
  to	
  the	
  top	
  of	
  the	
  screen	
  
(at	
  a	
  random	
  x	
  location)	
  and	
  come	
  down	
  again.	
  The	
  students	
  can	
  accomplish	
  this	
  
either	
  manually	
  using	
  Clock	
  components	
  or	
  automatically	
  using	
  the	
  built-­‐in	
  
ImageSprite	
  properties	
  of	
  Interval,	
  Speed,	
  and	
  Heading	
  (the	
  heading	
  would	
  be	
  270	
  
degrees	
  if	
  the	
  objects	
  are	
  moving	
  straight	
  down).	
  Note:	
  If	
  multiple	
  obstacles	
  are	
  to	
  
be	
  moved	
  simultaneously	
  but	
  at	
  different	
  rates,	
  one	
  Clock	
  component	
  might	
  be	
  
necessary	
  for	
  each	
  obstacle.	
  



 Chapter 2-29 

Project 6: Paper Prototyping 
 
Ask students to brainstorm ideas for games they wish to create by the end of 
the course (they should be shown examples of existing AppInventor / Android 
games in order to get their creative juices flowing). Then take them through the 
steps below. 
 
Step 1: Draw, with pencil or pen, a prototype of the game you wish to create. If 
the game will have multiple screens, draw out each of those screens.  
 

                             
 
Step 2: On top of the drawings for each screen, write down the names of the 
AppInventor components you wish to use for each object in the game. 
 

 



 Chapter 2-30 

Step 3: Write a brief description of the game on a piece of paper. Make the 
description read-able and easily understandable, you will be sharing it with your 
peers. 
 

 
 
 
Step 4: Prototype-sharing and Feedback session. Each group or individual should 
leave their paper prototypes and written description of the game on their table 
and rotate one spot to the left, where the group can evaluate the neighbor's 
game. The group should write down any feedback or suggestions they have on 
the piece of paper that contains the Game Prototype / Description, and then all 
groups should rotate another spot to the left. This continues until each group 
has rotated through all tables and provided feedback to every other group.  
 
For the rest of the day, students should work on their games in pairs or 
individually. The Instructor should help groups on a 1-on-1 basis, teaching them 
topics that they require for their games but haven't yet learned. 
 

Day 4: 
 
Students should work on their games as individuals or pairs. Instructor should 
assist groups on a 1-on-1 basis, providing help where necessary and teaching new 
topics that haven't yet been covered to the different groups. 
 



 Chapter 2-31 

Day 5:  
 
Because this is the final day of the course, students will (hopefully) be extremely 
excited, energetic, and eager to work on their final projects. If there are any 
specific topics that they should learn before the end of the course, the morning 
would be the right time since by the evening the students will be busy making 
last-minute changes to their games. 
 
So, before asking the students to begin working on their projects for the day, 
show them how to publish apps to Google Play (formerly known as Android 
Market) so that the general public can download their apps from the internet to 
their phone. The steps are outlined below. 
 
Step 1: Click "Download to this Computer" from the designer view of the 
AppInventor site in order to generate an .apk file for your AppInventor project. 
 

 
 
Step 2: Then go to https://play.google.com/apps/publish/Home. If you are not 
registered as a Google Play developer, you will need to pay a registration fee, 
create a developer profile, and accept some agreements. After you've done that 
(or if you're already a registered developer) you should see the Google Play 
Developer Console. From this console, click the "Upload Application" button to 
being the process. 
 
 
 
 
 
 
 
 
Step 3: Upload your .apk file when prompted. 
 



 Chapter 2-32 

 
 
Step 4: Provide other necessary information, e.g. the image icon to be used for 
your Android application, and the screenshots that should show up when an 
Android user tries to download your application from Google Play. 
 
 

 
 
Step 5: Click "Publish". 
 



 Chapter 2-33 

For the rest of the day, the students should work on finishing the games they 
had started developing the previous day, and the instructor should work with 
them on a one-on-one basis. 
 
During the final hour of the course, the students should present their apps to 
each other. 
 



 Chapter 3-34 

Chapter 3  
Teaching Experiences and 

Lessons Learned 



 Chapter 3-35 

Teaching in Bangalore, India. 
 
The author taught a 1-week (40 hours split over 5 days) course on Android 
Game Development using AppInventor to a group of 10 high-school students in 
Bangalore during December 2011. The students were sharp but had no prior 
programming experience. Yet when exposed to the curriculum outlined in 
Chapter 2, these students were able to grasp AppInventor's interface quickly and 
by the end of the week, each of them had built his very own game from scratch. 
 
During this workshop, the author worked with the students to complete certain 
exercises together (with the entire class) until Day 3, but from that point on, he 
allowed each student to work on his own app. Some photos of the students are 
included below: 
 

 
Students, along with the author (their instructor) during a field-trip to Google's 

office in Bangalore. 
 

 
Students showing off the games they developed using AppInventor. 



 Chapter 3-36 

Teaching in Boston. 
 
The author taught a series of 3 afterschool workshops (2-hours each) on 3 
different weeks at the John D. O'Bryant School of Math and Science in Boston. 
The focus was Game Development using AppInventor, but because the total 
length of instruction time was 6 hours, the author chose not to follow his 40-
hour curriculum and instead chose a more improvisational approach that was 
dependent entirely on the speed at which students picked up new concepts. 
 
Because each workshop was scheduled for a different week, there was very little 
continuity between the 3 workshops and during the 2nd and 3rd workshops, 
students had completely forgotten what they had learned during the previous 
one. As a result, the students in the course did not get nearly as far as the 
students in India had gotten on their projects, but they still managed to make 
some simple games (e.g. a user-controlled cat chasing a mouse that is bouncing 
around the screen, or a car game that has two cars moving in opposite directions 
on a road). Pictures from this experience are included below: 
 

             
 

 
Left: a car-racing game for Android tablets. Right: a game where the cat chases the 

mouse. Bottom: happy students from the course. 



 Chapter 3-37 

Pictures of student projects. 
 
Included below are screenshots of some of the nicer games developed by the 
author's students in India and Boston. 
 

 
 

 



 Chapter 3-38 

Lessons Learned. 
 
As anticipated, the experience of teaching first-hand turned out to be an 
effective strategy for accumulating points of weakness (areas of improvement) for 
AppInventor on the Game Development front. Learning occurred primarily in 
one of two ways: 
 

 A student asked a question along the lines of "How do you do xyz in 
AppInventor?” and the author was struck by the realization that 
AppInventor currently does not support operation xyz. If operation or 
entity xyz turned out to be a useful one for game development (i.e. if the 
need for it came up several times amongst the students during the 
course), the author noted it down on his list of "AppInventor Game 
Development limitations". 

 If the author experienced frustration or difficulty in managing the class or 
in communicating a particular topic, he noted it down as an area that 
might possibly be improved by enhancements in his curriculum or 
teaching style. 

 
The first bullet-point corresponds to AppInventor limitations and the second 
one corresponds to Pedagogical Challenges. Both topics are expounded below: 
 

AppInventor Limitations: 
 

1. Event handling for clicks (on buttons) and touches (on canvases) is 
imprecise since there is no separate event for touch-down and touch-
released or button-pressed and button-released. There is only a single 
event that fires when the release happens. The result of this is that a 
developer cannot implement logic such as "move the car left while button 
is pressed, and stop the car once button is released", which is usually how 
such games work. It is unreasonable to expect the user to press the 
button repeatedly in order to keep the car object moving. 

 
2. Animation of sprites is not supported, and by default, animated GIFs 

are not supported on Android. So, if a developer has three different 
frames/images for a Mario character that need to be displayed in 
succession to give the impression that Mario is walking, he/she would 



 Chapter 3-39 

need to flip through them manually. Automating this process would be 
useful. 

 
3. No support for multi-touch input or gesture detection. 

 
4. No support for having sprites that are simple shapes such as 

rectangles, ellipses, polygons, etc. If a developer wants to have a 
rectangular sprite, he/she would need to upload an image of a rectangle, 
which should not be necessary since a Rectangle is a simple and commonly 
used shape. 

 
5. AppInventor only supports collision detection with rectangular-

bounds, as opposed to pixel-by-pixel detection or polygon-based 
detection. The result is that for games where collision is being detected 
between two non-rectangular sprite objects, the results could be 
inaccurate on the corners.  

 
6. Vertically / Horizontally scrolling backgrounds are not supported. 

 
The author has addressed the first three of these limitations by implementing 
new AppInventor components or augmenting existing ones, and these 
implementations will be discussed in Chapter 4. The remaining three will be 
discussed in Chapter 6. 

Pedagogical Challenges: 
 

1. Students were spending too much time looking for images and sounds on 
the web, and in case they didn't find what they were looking for, they 
would spend hours editing images using Microsoft Paint or Adobe 
Photoshop. While this process of image-editing and resource-searching 
may play a role in developing the student's design sense and give the 
student a sense of ownership and creative license, it takes away from 
instruction time.  

 
 Solution: The author believes that the solution may be a hybrid 

approach that encourages students to search for resources on the 
web for some of the projects, but to pick from an existing Media 
Library for other projects. 

2. Instead of requiring each student to build the same game for his/her Final 
Project in the course, the author allowed each student to build a game of 



 Chapter 3-40 

his/her choice from scratch. A side effect of this policy was that the topics 
that each student needed to learn in order to complete his/her game were 
different from those that others needed to learn. Furthermore, some 
students are faster at picking up new topics than others. As a result, the 
author often found himself in the difficult position of having to teach 
different topics to different groups at different paces, all in a limited 
amount of time. How does one instructor succeed in teaching all students 
in the course exactly what they wish to learn when the things they want 
to learn are all different? 

 
 Solution: The author decided to make a set of 20 FlashCards 

containing mini-tutorials on various AppInventor Game 
Development concepts for his students. Now, when a student 
wants to learn a particular Game Development concept, he/she can 
check the flash-cards and attempt to teach himself / herself before 
asking the instructor to teach the topic. Therefore, even if five 
different students wanted to learn five different topics all at the 
same time, they would be able to do so by relying on five of the 
flash cards. 

 
The "Media Library" and "Flashcards" discussed here are provided in Chapter 
5, as a part of the Modified Curriculum. 
 



 Chapter 4-41 

Chapter 4  
Modifications to 

AppInventor 



 Chapter 4-42 

Four modifications. 
 
Chapter 3 identified six limitations of AppInventor that were discovered through 
the author's first-hand experiences teaching Game Development in India and the 
US. Three of those limitations (lack of touch-down and touch-up in event 
handling, lack of basic gesture recognition, and lack of easy-to-make animations) 
have been addressed in this thesis. In summation, the following four 
modifications have been made to AppInventor: 
 

1. Canvas objects and sprite objects can now handle a "TouchDown" event 
and "TouchUp" event in addition to the "Touched" event. 

 
2. AppInventor developers can now detect "fling" gestures on the Canvas 

object or sprite objects simply by handling the "Flung" event. 
 

3. AppInventor developers can now easily animate images (e.g. make a 
walking man, or a jumping character) by uploading multiple frames of an 
animation via an AnimatedSprite component. 

 
4. A new sensor, known as ProximitySensor, has been added. This sensor 

can detect when a human's hand or other object passes over the phone. 
 
Details of these modifications follow. 

Precise handling of touch events. 
 
Imagine that you wish to make a simple car-game where the objective is to move 
a car left and right, avoiding obstacles coming on the road in the opposite 
direction. 
 
You would like to be able to control the car using a left and right button; the 
car should move left while the left button is pressed, and right while the right 
button is pressed. If no buttons are pressed, the car should not move. 
 
We can capture left/right button input from the user in two ways in 
AppInventor: either using Button components or using ImageSprite components. 



 Chapter 4-43 

Using Button components, the project setup and Blocks Code would look like 
this: 
 

 
 

And using ImageSprite objects as buttons, the project setup and Blocks Code 
would look like this: 
 

 
 
 



 Chapter 4-44 

However, in both of these approaches, the game player would have to keep 
tapping the phone to keep the car moving, a task that can quickly become 
irritating and tiresome. 
 
To cause the car to move smoothly while a button is pressed requires knowledge 
of when touch-down and touch-up occurred on the button. 
 
The modified version of AppInventor provides these two event-handlers, 
fortunately, both for the Canvas component as well as for all types of sprite 
components (e.g. ImageSprite). The interface for these two event handlers looks 
identical to that of Touched, and therefore should be comprehensible to 
developers: 
 

 
 
The blocks-code implementation of the car game using TouchUp and 
TouchDown would look as follows: 
 

 



 Chapter 4-45 

Fling gesture detection. 
 
AppInventor now has the ability to detect fling gestures, which are quick finger-
motions that resemble swipes. 
 
Just as Canvas components and sprite components can both detect Touched, 
TouchUp, and TouchDown events, these two components can also detect a 
Flung event. It is up to the developer to decide which component should handle 
the Fling. 
 
If a developer wishes to detect any fling gesture that takes place anywhere on the 
canvas, then he/she should handle the "Canvas.Flung" event. On the other 
hand, if he/she only cares about situations when a particular sprite is flung, 
then he/she should handle the Flung event of on that sprite. Below is an 
example of how to detect flings on a "Ball" component: 
 

 

 
 
Note that the Flung event handler block provides xspeed and yspeed as 
arguments. These values represent how fast the finger was swiped on the screen 
in the x and y directions, respectively. In the above example, the division by 80 
(an arbitrary number) is performed in order to scale down the fling x and y 
speeds so that they are on the order of pixels per second and are reasonable, 
given the screen dimensions of most Android phones on the market. 



 Chapter 4-46 

The AnimatedSprite component. 
 
The AnimatedSprite component is essentially an ImageSprite that stores 
multiple images and automatically flips through them every few milliseconds 
(determined by the "PictureChangeInterval" property of the component). 
 
AnimatedSprite components fall within the same Component cateogry as 
ImageSprite and Ball components, and can be dragged onto the Canvas in 
exactly the same way. The difference arises in the picture-uploading process: 
while for ImageSprite components the developer can only upload one picture, the 
AnimatedSprite allows you to upload up to 5 pictures and it automatically cycles 
through them. 
 
To change how many milliseconds the component should wait before changing 
the picture, the developer should change the PictureChangeInterval property, 
either from the Properties panel in the designer view, or from the blocks code.  
 
To turn "on" the animation of the sprite, the developer should set the 
"SpriteAnimationEnabled" property to true, either from designer view or blocks 
code. 
 
Here's an example of how an AnimatedSprite component can be configured and 
used: 
 

 
 
 
 



 Chapter 4-47 

The ProximitySensor component. 
 
The proximity sensor is a piece of hardware that is built into most Android 
phones and has the ability to detect (by sensing ambient light) whether or not 
the phone is close to another object (e.g. if the phone is next to somebody's ear). 
However, until now, this sensor did not exist within AppInventor. 
 
Generally, a ProximitySensor can prove useful if a developer wishes to implement 
some logic that reacts to the phone being close to an object (as an example, 
imagine a humorous app that yells "boo!" as soon as a user puts the phone next 
to his/her ear). In the world of Game Development and Visual programming 
however, the proximity sensor can be handy since it provides yet another sort of 
'gesture' recognition -- specifically, for the hand-swipes-over-the-phone gesture.  
 
If a developer is building the PaintPot application from the AppInventor online 
tutorials, then he/she can get rid of the "Clear" button and instead clear the 
canvas when the user moves his/her hand across the top of the phone (without 
touching the phone) in a swiping motion. Likewise, within the context of a game, 
this above-the-phone swiping motion could be used as a cue to restart the game, 
or to pause/resume the game. 
 
Using the sensor is simple. The developer simply handles the 
"ProximityInfoReceived" event, and then within that event handler, checks 
whether the value of the "PhoneIsCloseToObject" property is true or false. 
 

 

 
 
 

 



 Chapter 5-48 

Chapter 5  
Modified Curriculum 

 
 

 

 

 

 



 Chapter 5-49 

Curriculum Overview 
 
 Planned Activities Concepts Learned 

Day 1 
(8 hrs) 

Ice Breakers 
Playing with Android Phones 
AppInventor Setup 
Overview of AppInventor's interface 
Project 1: HelloPurr and Media Player 
Project 2: Calculator 

Sound, Button, Screen, event handling, 
calling procedures, connecting to device, 
Player, screen arrangements, Label, 
TextBox, getting and setting property 
values, if-else statements, packaging apps 
to phone 

Day 2 
(8 hrs) 

Project 3: Drawing Program 
Project 4: Balls, Sprites, and Motion of 
Objects 
5 ways to make things move (automatically; 
using Clock, using Buttons, using 
Accelerometer, using Fling gestures) 

Canvas, 'dragged' and 'touched' events, 
drawing lines and circles, colors, 
ProximitySensor, Ball, ImageSprite, edge-
detection, bouncing ball, custom variables, 
custom procedures, Clock, Accelerometer, 
Fling gesture, Using ImageSprites as 
Buttons 

Day 3 
(8 hrs) 

Project 5: Car on a Road 
Project 6: Paper Prototyping 
Begin final project (game of student's choice) 

collision detection, random-number 
generation, making multiple objects move 
simultaneously using Clock,  

Day 4 
(8 hrs) 

Project 7: Fun with Animations 
Continue final project (game of student's 
choice) 

Students will learn about AnimatedSprite 
objects. The remainder of the instruction 
on Day 4 will be one-on-one and highly 
customized to each student's or group's 
needs. 

Day 5 
(8 hrs) 

Publishing AppInventor apps to Google 
Play 
Continue final project (game of student's 
choice) 
Presentations of final projects 

Google Play developer registration process, 
downloading AppInventor apps as .apk 
files, uploading .apk files to Google Play. 
The remainder of the learning on Day 5 
will be customized to each student's or 
group's needs. 

 



 Chapter 5-50 

Media Library 
 
When asked to find images or audio "on the web" for their games, students 
often get distracted or spend too long searching for the perfect image, or in 
editing images on Photoshop. So, we provide this library of good-looking and 
useful graphics and audio for the students to use in their games, to make sure 
they stay focused on the real purpose of this goal -- to learn programming. 
 
Images for Animation 

 
 
Images for Game Objects 

 
 
Images for Buttons 

 
 
Background Images 

 
 
Audio Files 

 



 Chapter 5-51 

AppInventor Flash Cards 
 



 Chapter 5-52 



 Chapter 5-53 

 
 
 
 



 Chapter 5-54 

 



 Chapter 5-55 

 



 Chapter 5-56 

 



 Chapter 5-57 

 



 Chapter 5-58 

 
 



 Chapter 5-59 

 



 Chapter 5-60 



 Chapter 5-61 

Day 1 
 
Begin with icebreakers (nicknames, fun facts, what you want to learn, why you 
enrolled in course, etc.) 
 
Hand out phones and connector cables, allow students to play around with and 
get a feel for the devices. Attract their attention to the Google Play application 
(formerly known as the Market) on the Android phones and excite them about 
the prospect of publishing their own application to Google Play (to be discussed 
on Day 5). 
 
Ask students to perform AppInventor setup, following the instructions at 
http://beta.appinventor.mit.edu/learn/setup/.   
 
Walk them through the basics of AppInventor's interface (designer view, palette, 
properties panel, visible vs. non-visible components, and blocks editor). 
 

Project 1: HelloPurr and MediaPlayer 
 
Start with simple "HelloPurr" app to introduce Sound, Button, Screen 
components and event handling. 
 

 
 
 
 



 Chapter 5-62 

Describe the difference between events and procedures (also known as 
functions) in the context of HelloPurr. Button1.Click is a handler for an event, 
whereas Sound1.Play is a procedure. 
 
Explain how to connect to device from the BlocksEditor, so that students can 
test their HelloPurr apps on their devices. 
 
Students should partner up and modify their HelloPurr app to turn it into a 
Media Player with play and stop buttons. Also, introduce the Player 
component here, which can play long songs, whereas the Sound component from 
the HelloPurr app could only play short sounds.  
Introduce the concept of layouts + screen arrangements. Show the students 
how to put the Play button and the Stop button on the same line by inserting 
both of them into a HorizontalArrangement component. Show the students 
how to center the buttons by adding empty components (such as Canvas or 
Label) on the left and right side of the HorizontalArrangement so that they 
serve as spacers. 
 

 
 

 
 



 Chapter 5-63 

Extra	
  Credit:	
  Add	
  a	
  pause/resume	
  button,	
  in	
  addition	
  to	
  the	
  play	
  and	
  stop	
  
buttons.	
  Student	
  may	
  choose	
  to	
  have	
  the	
  'resume'	
  state	
  of	
  the	
  pause-­‐resume	
  
button	
  look	
  different	
  from	
  the	
  'pause'	
  state	
  -­‐-­‐	
  if	
  this	
  is	
  the	
  case,	
  teach	
  them	
  how	
  to	
  
change	
  the	
  button's	
  background	
  image	
  when	
  the	
  button	
  is	
  pressed,	
  by	
  setting	
  the	
  
"Picture"	
  property	
  to	
  a	
  string	
  representing	
  the	
  filename	
  of	
  the	
  new	
  button	
  image.	
  

 

Project 2: Calculator 
 
Introduce students to Textbox and Label components, and ask them to use 
these along with HorizontalArrangements and Buttons to produce the interface 
for a two-number adder that looks as follows. 
 

 
The goal of this adder is to add the two numbers typed in by the user and to 
indicate their sum in the result text box when the 'add' button is pressed. 
 
 



 Chapter 5-64 

As the students implement this functionality in the Blocks Editor, they will learn 
about properties of components, and will learn to get and set their value. 
 

 
 
Students should work individually to modify this adder and turn it into a 
calculator that can do all four operations on two numbers. The students should 
use screen arrangements to make this look nice, see below for a screenshot: 
 

 
 
 
 
After the students have implemented the interface, ask them to follow the model 
of the adder they previously constructed to implement the subtraction, 
multiplication, and division operations. 
 



 Chapter 5-65 

 
 
Next, teach students about basic control structures, specifically if-else 
statements. Ask students to use if statements to prevent division by zero. Here 
is one way of doing this: 
 

 
 
 
 



 Chapter 5-66 

Extra	
  Credit:	
  Ask	
  students	
  that	
  finish	
  early	
  to	
  style	
  their	
  calculator	
  by	
  changing	
  
background	
  color	
  /	
  images	
  of	
  the	
  screen,	
  buttons,	
  textboxes,	
  or	
  other	
  components.	
  

 
 
Once all students are caught up, teach how to package appinventor apps to the 
phone so that the app can run on the phone without requiring the phone to 
remain connected to the computer. Ask students to package their calculators and 
their MediaPlayer apps  and to download these to their Android devices. 
 
 

 
 

Day 2: 
Project 3: Drawing Program 
 
Introduce Canvas component as the fundamental container component for 
graphics (drawings, images, sprites, etc.). 
 
Build a simple drawing application where user drags on the canvas to draw lines 
and can clear canvas by clicking the clear button. 
 

 



 Chapter 5-67 

Show how to set the drawing color of canvas when screen (application) gets 
initialized, and how to handle dragged events. 
 

 
 
Ask students to modify the drawing program to include buttons to set the 
drawing color of the application, and to draw circles in response to touched 
events. 
 

 
 



 Chapter 5-68 

 
 
Once students finish the drawing program, teach them how to clear the canvas 
by sensing hand motions instead of relying on button-clicks. 
 
Introduce ProximitySensor, and explain how we can detect when a user's hand 
is close to the proximity sensor on the phone and how we can use this to detect 
a general swiping motion of the hand above the phone. 
 
The students should drag a ProximitySensor from the Funf component category 
onto their project, and should include the following in their Blocks code: 
 

 
 



 Chapter 5-69 

Project 4: Balls, Sprites, and Motion of Objects 
 
Introduce the Ball component as one of two Sprite components in AppInventor 
that have the ability to move around on a canvas. The second sprite component 
is ImageSprite, which is similar to a ball in that it can be moved around on a 
canvas, but it is visually represented by a custom Image that is uploaded by the 
AppInventor developer. 
 
There are many ways to make Balls and ImageSprites move, but in this course 
we'll discuss the four of them (listed below) that are most applicable to game 
development: 
 
1) Automatically (using built-in properties) 
2) Using buttons 
3) Using the AppInventor Clock component 
4) Using Accelerometer 
5) Using Fling gesture-detection 
 
Motion Method 1: Automatically 
 
Introduce sprite properties such as Heading, Speed, X, Y, and Interval that 
are required for automated motion of the sprite, and show students how to set 
these properties from the Properties panel in the Designer view. Create a simple 
app where the ball bounces around the screen, using the 'EdgeDetected' event 
handler and the 'Bounce' procedure in the blocks editor. 
 

 
 



 Chapter 5-70 

Then, ask the students (individually) to replace the ball with an ImageSprite, 
using an image of their choice (e.g. a fancy ball image from Google), but make it 
do the same sort of bouncing around using 'edge detected'. 
 

         
 
 
Motion Method 2: Button-controlled ball motion: 
 
Ask students to create an AppInventor project with a single ball on a canvas 
and left/right buttons below the canvas, as shown below: 
 

 
 



 Chapter 5-71 

In order to make the ball move, we will update the ball's x position as the left 
and right buttons are pressed. The amount of pixels that we move the ball each 
time the buttons are clicked is known as the ball's speed (in the x direction). 
 
Introduce the concept of variables, and discuss how to define your own, and 
how to access and set their value. Then, ask students to create a variable 
representing the speed of the ball in the x direction. The blocks code for making 
the ball move then looks as follows: 
 

 
 
Ask students to extend this app for up and down motion controlled by up and 
down arrows: 
 

 
 



 Chapter 5-72 

 
 
Note: Students may find it annoying and tiresome to have to keep pressing the 
buttons repeatedly to make the object move around the screen. There is a way 
to make the objects move smoothly using buttons, but this approach requires 
knowledge of the Clock component, and will therefore by taught below under 
"Motion Method 3".  
 
Motion Method 3: Using the AppInventor Clock component 
 
Introduce the Clock component, which is a timer that fires every few 
milliseconds (as specified by the TimerInterval property, which can be set 
either in the designer view or in the blocks editor).  
 
Ask students to create a new project with a Ball, Canvas, and Clock (which will 
show up below the screen as a non-visible component). 
 

 



 Chapter 5-73 

We now make the ball move up a few pixels (as determined by the value of the 
speed variable) every time the timer fires. Once the ball reaches the top of the 
screen, we ask the timer to stop firing, and we wait for the user to click the 
'restart' button. Clicking the restart button causes the ball to reset its location 
to the bottom of the screen and turns on the timer once again. 
 
We use this opportunity to teach how to define and call your own procedure, 
by turning the 'restart' action into its own procedure. The blocks code is shown 
below: 
 

 
 
 

Extra	
  Credit:	
  It	
  is	
  annoying	
  to	
  make	
  the	
  ball	
  move	
  using	
  buttons,	
  since	
  the	
  user	
  
has	
  to	
  press	
  the	
  buttons	
  repeatedly	
  to	
  keep	
  the	
  ball	
  moving.	
  He/she	
  cannot	
  simply	
  
leave	
  his/her	
  finger	
  on	
  the	
  button	
  and	
  allow	
  the	
  ball	
  to	
  move	
  while	
  the	
  button	
  is	
  
pressed.	
  This	
  is	
  because	
  the	
  Click	
  handler	
  for	
  Button	
  components	
  only	
  allows	
  
detection	
  of	
  taps	
  and	
  gives	
  no	
  information	
  about	
  how	
  long	
  it	
  was	
  pressed.	
  So,	
  in	
  
this	
  extra-­‐credit	
  exercise	
  we	
  show	
  how	
  to	
  achieve	
  motion	
  of	
  sprites	
  using	
  
ImageSprite	
  objects	
  as	
  buttons	
  and	
  Clock	
  components	
  to	
  ensure	
  smooth	
  motion.	
  

 
Ask the student to design the following interface, with a ball, two ImageSprites 
representing left and right buttons, and a Clock: 
 
 



 Chapter 5-74 

 
 

ImageSprite objects, like Balls, have a number of event-handler methods such as 
"Touched", "TouchDown", and "TouchUp". A TouchDown event is fired 
whenever a user's finger touches down on an image sprite, and a TouchUp is 
fired when the finger lifts off that image sprite. The Touched is fired only if the 
TouchDown and TouchUp occur quickly in succession. The Click event-handler 
works the same way that the Touched event-handler works for sprites, which is 
why, for this exercise, we will use TouchDown and TouchUp since they provide 
more information about when the finger was put down and when it was lifted. 
 
The students' goal in this exercise is to build an app where the ball moves left / 
right while the user presses the left and right button and it stops moving as 
soon as the player lets go of the left / right buttons. 
 
As before, we create a variable for the ball's speed, setting it to zero initially. In 
the clock's Timer event handler, we update the ball's horizontal position by its 
speed. 
 

 
 



 Chapter 5-75 

 
The magic occurs in the TouchUp / TouchDown event handling: 
 

 
 
While the user is pressing the left-button, the ball's speed remains -3, but as 
soon as the left button is un-pressed, the ball's speed is set back to zero. 
Likewise, the ball's speed is +3 while the right button is pressed but becomes 
zero as soon as the finger is lifted. 
 
The result is smooth motion of the ball using buttons (which are actually 
ImageSprite components) and a Clock. 
 
 
 
Motion Method 4: Using the Accelerometer 
 
The Accelerometer is a built-in sensor in Android devices that senses changes in 
acceleration. Here, we use the accelerometer to make the ball move left and right 
as the phone is tilted left and right, hence avoiding the need for buttons and 
other forms of tactile input. 
 



 Chapter 5-76 

 
 
If students finish early, ask them to extend the program to also detect 
acceleration changes in the y direction (to move the ball up and down): 
 

 
 
 

Extra	
  Credit:	
  Students	
  will	
  note	
  that	
  while	
  the	
  above	
  code	
  works,	
  the	
  motion	
  of	
  
the	
  ball	
  is	
  not	
  smooth.	
  In	
  order	
  to	
  achieve	
  smooth	
  motion,	
  students	
  should	
  use	
  the	
  
Clock	
  component	
  in	
  conjunction	
  with	
  the	
  Accelerometer	
  sensor,	
  following	
  the	
  
steps	
  below.	
  



 Chapter 5-77 

Smooth Motion Step 1: Add a Clock component to the project. In the below 
screenshots, the clock is called "smoothMotionClock". 
 

 
 
Smooth Motion Step 2: In the blocks code, create variables for speed in the x and 
y direction, initialize the clock's timer interval in the Screen's Initialize event, and 
handle the clock's Timer event by updating the ball's x and y location by the 
appropriate speed variables. 

              
 
Smooth Motion Step 3: In the AccelerationChanged event handler, instead of 
updating the ball's position as you did in the previous version of this app, simply 
set the value of the x and y speed variables. The ball's position will be updated 
by the Clock timer and therefore will be unaffected by factors such as how 
quickly the phone is tilted. 
 

 



 Chapter 5-78 

Motion Method 5: Using Fling gesture-detection 
 
In this section, we teach students how to cause objects to move when flung by 
the user (i.e. when the user puts a finger down on an object and then quickly 
swipes in the direction in which it wants the object to move). 
 
If students wish to detect any fling gesture that takes place anywhere on the 
canvas, then students should handle the "Canvas.Flung" event. On the other 
hand, if they only care about when a particular sprite is flung, then they should 
handle the Flung event of on that sprite. Below, we show how to detect flings on 
the "Ball" component that we have been playing around with for the past few 
exercises. 
 
 

 
 
 
 
In the Flung event-handler, we merely set the speed of the ball in proportion to 
the speed and strength of the fling. That is, the quicker the user moves his/her 
finger to fling our ball, the quicker our ball should move. The actual updating of 
the ball's position happens in the "Timer" handler of the Clock: 
 

 



 Chapter 5-79 

Day 3: 
Project 5: Car on a Road 
 
Review previous day's material -- Canvas, Drawing, and motion of sprites -- by 
building a simple game where a car (represented by an ImageSprite) moves left 
and right on a road (a Canvas with an image as a background): 
 

 
 
The students may implement the motion of the car using either the Clock 
component, buttons, or the accelerometer. 
 
Using this same project as a starting point, introduce students to collision 
detection, a very useful facet of game development. Ask them to add one or 
more obstacles (ImageSprite objects) onto the road, e.g. the banana and the cow 
in the following image: 

 
 



 Chapter 5-80 

In the blocks code, ask students to insert if-statements (right after the code that 
updates the car's position) to check if the car is colliding with other obstacles: 
 

 
 
Next, introduce students to random-number generation by showing them 
how to make the obstacles on the road appear in random (x,y) coordinate 
locations using the random integer procedure to pick random values for x and y. 
 
In the below blocks code, the Cow's x value is picked randomly from within the 
range [0, 300] and the y value is picked randomly from the range [0, 400]: 
 

 
 

Extra	
  Credit:	
  If	
  students	
  finish	
  early,	
  have	
  them	
  attempt	
  to	
  complete	
  this	
  car	
  
obstacle-­‐avoidance	
  game	
  by	
  animating	
  the	
  obstacles	
  such	
  that	
  they	
  appear	
  at	
  the	
  
top	
  of	
  the	
  screen,	
  move	
  from	
  top	
  to	
  bottom,	
  and	
  then	
  reset	
  to	
  the	
  top	
  of	
  the	
  screen	
  
(at	
  a	
  random	
  x	
  location)	
  and	
  come	
  down	
  again.	
  The	
  students	
  can	
  accomplish	
  this	
  
either	
  manually	
  using	
  Clock	
  components	
  or	
  automatically	
  using	
  the	
  built-­‐in	
  
ImageSprite	
  properties	
  of	
  Interval,	
  Speed,	
  and	
  Heading	
  (the	
  heading	
  would	
  be	
  270	
  
degrees	
  if	
  the	
  objects	
  are	
  moving	
  straight	
  down).	
  Note:	
  If	
  multiple	
  obstacles	
  are	
  to	
  
be	
  moved	
  simultaneously	
  but	
  at	
  different	
  rates,	
  one	
  Clock	
  component	
  might	
  be	
  
necessary	
  for	
  each	
  obstacle.	
  



 Chapter 5-81 

Project 6: Paper Prototyping 
 
Ask students to brainstorm ideas for games they wish to create by the end of 
the course (they should be shown examples of existing AppInventor / Android 
games in order to get their creative juices flowing). Then take them through the 
steps below. 
 
Step 1: Draw, with pencil or pen, a prototype of the game you wish to create. If 
the game will have multiple screens, draw out each of those screens.  
 

                             
 
Step 2: On top of the drawings for each screen, write down the names of the 
AppInventor components you wish to use for each object in the game. 
 

 



 Chapter 5-82 

Step 3: Write a brief description of the game on a piece of paper. Make the 
description read-able and easily understandable, you will be sharing it with your 
peers. 
 

 
 
 
Step 4: Prototype-sharing and Feedback session. Each group or individual should 
leave their paper prototypes and written description of the game on their table 
and rotate one spot to the left, where the group can evaluate the neighbor's 
game. The group should write down any feedback or suggestions they have on 
the piece of paper that contains the Game Prototype / Description, and then all 
groups should rotate another spot to the left. This continues until each group 
has rotated through all tables and provided feedback to every other group.  
 
 
For the rest of the day, students should work on their games in pairs or 
individually. The Instructor should help groups on a 1-on-1 basis, teaching them 
topics that they require for their games but haven't yet learned. 
 



 Chapter 5-83 

Day 4: 
Project 7: Fun with Animations  
 
Begin the day by introducing the AnimatedSprite component, which may 
prove very useful to the students in their games. 
 
First, students should drag an AnimatedSprite component onto their screen. 
 

 
Then, they should upload up to 5 images for the animated sprite component 
using the Properties panel. These images should preferably be multiple frames of 
the same animation, for example this one:  
 

 
 

It is ok if they upload less than 5 pictures; the AnimatedSprite object will 
automatically flip between the pictures that are uploaded. The students should 
also set the PictureChangeInterval property to the amount of milliseconds they'd 
like to wait between each picture change in the animation.  
 
 
 
 
 
 
 
 
 
 
 
 



 Chapter 5-84 

As a last step, students should set the "SpriteAnimationEnabled" property to 
"true" in their blocks code to start animating their sprite. 
 

 
 
For the rest of the day, the students should work on their games as individuals 
or pairs. Instructor should assist groups on a 1-on-1 basis, providing help where 
necessary and teaching new topics that haven't yet been covered to the different 
groups. 

Day 5:  
 
Because this is the final day of the course, students will (hopefully) be extremely 
excited, energetic, and eager to work on their final projects. If there are any 
specific topics that they should learn before the end of the course, the morning 
would be the right time since by the evening the students will be busy making 
last-minute changes to their games. 
 
So, before asking the students to begin working on their projects for the day, 
show them how to publish apps to Google Play (formerly known as Android 
Market) so that the general public can download their apps from the internet to 
their phone. The steps are outlined below. 
 
Step 1: Click "Download to this Computer" from the designer view of the 
AppInventor site in order to generate an .apk file for your AppInventor project. 
 

 



 Chapter 5-85 

Step 2: Then go to https://play.google.com/apps/publish/Home. If you are not 
registered as a Google Play developer, you will need to pay a registration fee, 
create a developer profile, and accept some agreements. After you've done that 
(or if you're already a registered developer) you should see the Google Play 
Developer Console. From this console, click the "Upload Application" button to 
being the process. 
 
Step 3: Upload your .apk file when prompted. 
 

 
 
Step 4: Provide other necessary information, e.g. the image icon to be used for 
your Android application, and the screenshots that should show up when an 
Android user tries to download your application from Google Play. 
 

 
 



 Chapter 5-86 

Step 5: Click "Publish". 
 
For the rest of the day, the students should work on finishing the games they 
had started developing the previous day, and the instructor should work with 
them on a one-on-one basis. 
 
During the final hour of the course, the students should present their apps to 
each other. 



 Chapter 6-87 

 

Chapter 6  
Future Plans and 

Suggestions 



 Chapter 6-88 

Suggested feature additions. 
 
Chapter 3 identified limitations of AppInventor with respect to game 
development capabilities, and Chapter 4 described a number of AppInventor 
modifications that address them. However, there still remain ample opportunities 
for improvement in AppInventor -- new components can be added and existing 
ones can be modified so that AppInventor users may more easily develop 
aesthetically pleasing and professional-looking games. Below is a list of App 
Inventor modifications that the author believes would be most useful to add in 
the near future, in addition to the modifications he has already made. 
 

Collision Detection 
 
Currently, collisions in AppInventor are detected by checking for an intersection 
between the bounding rectangles of each ImageSprite. If the two bounding 
rectangles collide, even if the two objects they encompass don't actually collide, a 
collision will be detected, and this result would be inaccurate. 
 

 
 
It is not hard to see from the figure above, that any game that depends on 
collision detection between non-rectangular objects would soon be characterized 
as 'unfair' or 'annoying' due to the errors the collision detection algorithm would 
make at the corners of the two objects. 
 
It is difficult as well as computationally intensive to do pixel-by-pixel collision 
detection for all objects in motion in a game. Instead, it is better to take an 
intermediate approach that performs polygon-based collision detection. In this 
approach, the game developer would have the option of specifying the shape and 



 Chapter 6-89 

size of a custom 'bounding polygon' (triangle, square, pentagon, hexagon, etc.), 
and then this custom polygon would be used internally by AppInventor to 
perform collision checks between objects that are in each others' vicinities. 
 
The Android SDK does not provide a collision detection library or algorithm for 
polygon bounding boxes, unfortunately, so this would need to be implemented 
manually, using algorithms such as the Separating Axis Theorem. 
 

ShapeSprite 
 
Often in game development, there is a need for simple graphics that can be 
comprised of shapes such as rectangles, ovals, lines, arcs, and polygons. When 
such objects are needed, it may be better (in terms of game performance, size of 
the generated .apk file, and overall look and feel) if the graphics are vector-based 
instead of images that the developer needed to upload. Furthermore, from a 
convenience and efficiency point of view, if a game developer wishes to create 
objects that are simple rectangles, it is annoying to have to create an image of a 
rectangle and then upload it to AppInventor as an ImageSprite; it would be 
faster to simply drag a Rectangle sprite onto the project layout.  
 
So, the author proposes the addition of a ShapeSprite, which will be a 
component that a developer can drag onto his/her project. The developer will 
select the specific shape of this ShapeSprite from the right-hand-side Properties 
panel, where a drop-down will be available to allow for selection between 
Rectangle, Oval, Line, Arc, and Polygon. The chosen polygon shape will then be 
added to the developer's app as a sprite object that is capable of moving within 
the canvas, just like a Ball or ImageSprite. 
 

ScrollingBackground  
 
Game developers often rely on scrolling backgrounds to provide the illusion of 
motion and progress in a game, yet in AppInventor, there is currently no 
support for implementing this. A Canvas may take a fixed background image, 
but there are no available properties for determining the offset of that 
backgrounds image, so it is not possible to make that image scroll. 
 
This can be accomplished in multiple ways in Android. One is to use translations 
on the entire view -- this is convenient if all you're trying to do is a back-and-



 Chapter 6-90 

forth translation motion for the background, but if the goal is to loop the 
background (which is a bitmap resource being drawn onto a canvas), then the 
right way to implement this would be to keep decrementing the offset of the 
background (so that it moves right-to-left) until it starts to go off screen, and 
then to start drawing the same background image to fill in the gap left by the 
first background image that has started going off-screen. So, the AppInventor 
developer would only need to upload one background image, and specify two 
additional properties: he/she would need to set the ScrollBackground property to 
true, and set BackgroundScrollSpeed to a nonzero number representing the 
number of pixels to scroll the background each interval. The direction of the 
background's scrolling could then be set by choosing the sign of the scroll speed 
to be negative or positive. 
 
Below is an example of how to implement scrolling backgrounds using the 
Android SDK: 
 

// decrement the background offset 
mBGFarMoveX = mBGFarMoveX - 1; 
 
// calculate the wrap factor for matching image draw 
int newFarX = mBackgroundImageFar.getWidth() - (-mBGFarMoveX); 
 
// if we have scrolled all the way, reset to start 
if (newFarX <= 0) { 
 mBGFarMoveX = 0; 
      // only need one draw 
      canvas.drawBitmap(mBackgroundImageFar, mBGFarMoveX, 0, null); 
} else { 
        // need to draw original and wrap 
        canvas.drawBitmap(mBackgroundImageFar, mBGFarMoveX, 0, null); 
        canvas.drawBitmap(mBackgroundImageFar, newFarX, 0, null); 
} 

 
 
 
 
 
 
 
 
 
 



 Chapter 6-91 

Future plans and experiments. 
 
Now that the author of this thesis has made modifications to AppInventor and 
refinements to his Game Development curriculum, it is important to test 
whether these changes actually enable students to make better-looking games or 
to pick up game development concepts more quickly. 
 
To this end, the author will be performing the following two experiments in the 
near future: 
 
Teaching in India:  
 
In June - July 2012, the author will be personally conducting some AppInventor 
game development courses for high-school students in Delhi and Bangalore using 
his refined curriculum and the modified version of AppInventor. This will be an 
excellent way to validate and confirm whether the modifications and refinements 
make any impact on the students' learning and on the quality of their games. 
Each course will be 40-hours long and will be taught over 1 week (8 hrs / day). 
 
Teaching in China: 
 
The author will be traveling to China with a group of other MIT students in 
August 2012. There, he will lead the instruction of an AppInventor-based 
Entrepreneurship course, the goal of which would be to empower students to 
build Android apps that address problems in the students' community. 
Although the focus of this course will not be on Game Development, the author 
will use game development to initially get the students excited about using 
AppInventor and building android apps. 
 
It will be interesting to see if the flashcards developed by the author, as well as 
the Media Library, aid students in learning AppInventor more quickly and 
designing aesthetically pleasing apps more efficiently. 
 
While teaching these courses in June - August 2011, the author will continue to 
work with the Center for Mobile Learning at MIT to ensure that other students 
familiar with AppInventor are also traveling to communities around the world to 
teach AppInventor, making use of the resources developed by the author as a 
part of this thesis (e.g. the curriculum, flashcards, and media library). 



 Chapter 7-92 

Chapter 7  
Contributions and 

References 
 



 Chapter 7-93 

Contributions 
 

 Identified and articulated the relevance and importance of Game 
Development to educational tools such as AppInventor. 

 
 Identified existing and missing features for Game Development in 

AppInventor based on first-hand teaching experiences in India and 
Boston. 

 
 Developed two iterations of a hands-on curriculum for a 40-hour 1-week 

AppInventor course on Game Development. 
 

 Compiled a Media Library, consisting of images and audio, to be provided 
to students attempting to build games with AppInventor. 

 
 Created a set of 20 Flash Cards of AppInventor game development 

fundamentals, to be used by anybody learning AppInventor. 
 

 Added AnimatedSprite and ProximitySensor components and 
implemented modifications to Canvas and sprite components enabling 
more precise touch-handling and Fling gesture detection. 



 Chapter 7-94 

References 
 
[1] MIT AppInventor. Building Your First App (Hello Purr). 
<http://beta.appinventor.mit.edu/learn/setup/hellopurr/hellopurrphonepart1.ht
ml> 
 
[2] MIT AppInventor. PaintPot Tutorial (Part 1). 
<http://beta.appinventor.mit.edu/learn/tutorials/paintpot/paintpot-
part1.html> 
 
[3] Android Developers Website. Scrolling Backgrounds Example: JetBoy Game. 
<http://developer.android.com/resources/samples/JetBoy/src/com/example/and
roid/jetboy/JetBoyView.html> 
 
[4] Separating Axis Theorem. Detecting Polygon Collisions. 
<http://www.codeproject.com/KB/GDI-plus/PolygonCollision.aspx> 
 

 
  
 
 
 


