
ENCOURAGING COLLABORATION THROUGH
APP INVENTOR

Thesis
Submitted in Partial Fulfillment

of the Requirements for the

Degree of
Master of Arts in Interdisciplinary Computer Science

Mills College

Fall 2012

By

Katherine Kyle Feeney

Approved by:

Interdisciplinary Advisor __________________________________
Professor Harold Abelson
Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology, Cambridge

Computer Science Advisor _______________________________
Professor Ellen Spertus
Department of Mathematics and Computer Science
Mills College, Oakland

Director of ICS Program _________________________________
Professor Susan Wang
Department of Mathematics and Computer Science
Mills College, Oakland

 iii

ABSTRACT
App Inventor is a free, open source application that permits people with any level
of programming background to create software applications for the Android
operating system. At the time of its open source release, it lacked important
resources for supporting collaboration: documentation for source code
contributors and technological support for users developing apps in a group
environment. To address these issues, I added a property to an existing
component and then created detailed documentation about the process for future
developers. I also created a tool for merging multiple projects, which will
encourage teamwork by allowing multiple users to code separately and then
combine their work. These contributions will increase collaboration among users
as well as developers of App Inventor.

 iv

CONTENTS
1. Introduction ... 1

1.1 Background .. 2
1.1.1 App Inventor .. 2
1.1.2 Google to MIT .. 2
1.1.3 App Inventor Uses ... 3
1.1.4 Experience with App Inventor ... 4

1.2 Motivation .. 4
1.2.1 Interest in App Inventor .. 4
1.2.2 App Inventor Changes ... 6
1.2.3 Documentation For New Developers ... 7

2. Button Shape Property .. 8
2.1 Solution .. 9

2.1.1 System Set up ... 9
2.1.2 Learning the code .. 12
2.1.3 Change Button Shape Programmatically .. 12
2.1.4 Implementing Changes to the Code ... 14

2.1.4.1 Properties Panel ... 14
2.1.4.2 Viewer Panel .. 17
2.1.4.3 Android Device ... 20
2.1.4.4 Version Numbers .. 21
2.1.4.5 Testing ... 21

2.2 Continuing Problems .. 22
2.3 Documentation ... 23
2.4 Future Benefits ... 24

3. Project Merging Tool ... 25
3.1 Solution Process .. 25

3.1.1 Manual Merge ... 25
3.1.2 Command Line Merge ... 29
3.1.3 AIMerger ... 29

3.1.3.1 Scope .. 29
3.1.3.2 Interface Implementation .. 31
3.1.3.3 Backend Implementation .. 33
3.1.3.4 Testing ... 35

3.2 Documentation ... 38
3.3 Bugs .. 39
3.4 Presentation .. 39
3.5 Future Improvements ... 40
3.6 Future Benefits ... 41

 v

4. Conclusion ... 42

Appendix A – Shell Scripts ... 44

Appendix B – Static Class Diagrams ... 45

Appendix C – Diff file for CL1 ... 47

Appendix D – How to Add a Property to A Component 58

Appendix E – Bug Report ... 75

Appendix F – Merge Code .. 77

Appendix G – AIMerger Documentation ... 80

References ... 95

 vi

FIGURES
Figure 1: Blocks interface example. .. 2

Figure 2: Code excerpt from ButtonStyle .. 13

Figure 3: Properties Panel in Design view ... 15

Figure 4: Shape PropertyEditor in the Designer .. 15

Figure 5: Button Property Panel .. 17

Figure 6: Viewer Panel in Design view .. 18

Figure 7: Test1 and Test2 project file structures ... 26

Figure 8: AIMerger Logo .. 30

Figure 9: Layout Sketch ... 31

Figure 10: AIMerger Interface .. 33

Figure 11: App Inventor Merger Package Diagram ... 34

 vii

TABLES
Table 1: Button Shape Methods .. 13

Table 2: Mock Buttons ... 19

Table 3: Button Shape Tests ... 21

 1

1. INTRODUCTION

App Inventor is a free, open source application that permits people with any level

of programming background to create software applications for the Android

operating system. App Inventor is a project that I am excited to be working on/

with and in doing so found that it was lacking in two important areas: sufficient

documentation for contributors to the source code and supporting users who

were developing in a group environment.

I contributed to improving the available documentation by creating a paper that

details the steps I took to add the shape property to the Button component. This

contribution will inform future developers who would like to add a property to a

component.

I created the App Inventor Merger and wrote the associated documentation to

make it easier for users of App Inventor to develop as a group. The App Inventor

Merger allows users to develop different screens of a project independently and

then merge them together into one project. The documentation I created around

the App Inventor Merger describes not only how to use the tool but also how to

develop in a team environment.

Both of these contributions to App Inventor encourage collaboration amongst

developers, whether they are developers of App Inventor or developers with App

Inventor.

 2

1.1 BACKGROUND

1.1.1 APP INVENTOR

App Inventor is a free, open source application that permits people with any level

of programming background to create software applications for the Android

operating system. App Inventor uses a graphical user interface that allows users

to drag and drop blocks (puzzle-shaped objects) to build their application without

ever having to write traditional code. A simple example of this interface is shown

below in Figure 1.

Figure 1: Blocks interface example.

1.1.2 GOOGLE TO MIT

Google originally launched App Inventor in July 2010. At that time App Inventor

was a free web service that was provided to the public as a part of the Google

Labs suite. In August 2011, Google announced that App Inventor would be

released as an open source project.

In a response to the end of Google App Inventor, the Center for Mobile Learning

was established at the MIT Media Lab to continue providing App Inventor to the

public. In the fourth quarter of 2011 the Center of Mobile Learning started

 3

working on App Inventor and in March of 2012 a beta version of MIT App

Inventor was released to the public.

1.1.3 APP INVENTOR USES

Many different organizations and individuals with dramatically different goals are

currently using App Inventor. This is possible partially because of how accessible

App Inventor is both in the sense of programming skills and in the sense of

having physical access to technology.

App Inventor is currently being used in a variety of educational settings, including

classrooms ranging from elementary school to college and after-school

programs.. While many do teach computer science using App Inventor, there are

also a number of educators using it as a tool to engage students while teaching

any subject. Many after school programs are being developed around App

Inventor. These programs often focus on encouraging groups that are typically

underrepresented in technology to feel empowered to be creators of technology.

App Inventor is also being used to foster entrepreneurship [MIT Center for Mobile

Learning, 2012] [Iridescent, 2012]. Entrepreneurs are taking advantage of the

ability to quickly and cheaply put together prototypes of their ideas, which they

can use to pitch to venture capitalists. Using App Inventor eliminates a lot of time

and work that is often done before there is even any funding for a project. App

Inventor also broadens the pool of individuals who can be entrepreneurs in the

tech industry. It is no longer necessary to know how to program in order to pitch

an idea with a working prototype.

 4

1.1.4 EXPERIENCE WITH APP INVENTOR

My first experience with App Inventor was in February of 2011 when I worked as

a lead teaching assistant for an after school program called The Technovation

Challenge. The Technovation Challenge is a program run by the non-profit

Iridescent, which focuses on science, technology, engineering and math (STEM)

education for underserved and underrepresented youth. The goal of the

Technovation Challenge is to encourage women in technology and

entrepreneurship and they strive to reach this goal using App Inventor. As a lead

teaching assistant I spent ten weeks working with a group of high school girls to

teach them App Inventor and help them develop their own original app.

In January 2012, I again worked with the Technovation Challenge, this time as

an instructor. As an instructor I taught approximately fifty girls computer science

concepts through App Inventor and assisted ten teams in the development of

apps. Both as an instructor and a lead teaching assistant I was able to observe

firsthand the users’ experience learning and using App Inventor.

1.2 MOTIVATION

I was drawn to this project for a variety of reasons, including App Inventor’s

mission and the desire to improve the user experience within App Inventor. In

this section, I will provide a detailed description of my motivations.

1.2.1 INTEREST IN APP INVENTOR

One of my main goals while working in the computer science industry is to work

on projects that make both the creation and use of computer technology more

 5

accessible to the masses. Computers are infiltrating all aspects of our lives and

currently it is a limited, elite group that has the privilege to create and use that

technology. It is important that this begins to change because all people,

particularly children, have a right to learn the technological skills necessary to

engage fully in today’s increasingly computer-dependent society.

Creating tools and training that are accessible to users of all levels of experience

is an essential element of democratizing computing skills. Another element is

keeping those resources affordable. App Inventor tackles both of these

challenges, as it is designed for people without coding experience and is free to

use. If an individual or organization has access to a computer with Internet

access, then they can run App Inventor at no additional cost. Not only is App

Inventor a free, open-source software, but the platform for which it makes apps

(Android) is also open source. Since, Android is open source any manufacturer

can create an Android device without having to pay to use the operating system.

This means that there are more, inexpensive options for devices that can run

apps created with App Inventor.

Another reason that I decided to work on App Inventor is that one of their goals

coincides perfectly with one of mine, which is to encourage all people to become

producers, rather than only consumers, of technology. App Inventor actively

reaches for this goal by providing several free online tutorials to help new users

get started. This allowed many outside organizations to deploy App Inventor to

empower populations that are traditionally underrepresented in computing. The

intuitive, forgiving interface has allowed organizations to open up computing

 6

classes for inexperienced coders. For example, the University of San Francisco

offers a mobile apps class using App Inventor as a general education class and

attracts over 50% women. According to a Business Week story, this class has

actually encouraged women to consider majoring in computer science [King,

2012].

1.2.2 APP INVENTOR CHANGES

In my project, I addressed two characteristics of App Inventor that made it

unnecessarily difficult to use: collaborative programming and customizing the

end-user interface. I encountered the need for both features while working with

The Technovation Challenge. I observed high school students as they used App

Inventor and I noticed that users had two major frustrations: they wanted more

control over the user interface and they wanted it to be easier to develop an app

as a team.

As the groups developed their app, it became clear that App Inventor was very

restrictive when it came to working as a group. A major part of this issue was that

only one member of the group could be programming the app at once. When

working in a group of five (as The Technovation Challenge teams were) it was

often frustrating and boring for the team members who were not programming. A

number of teams approached me and asked if there was any way for different

team members to work on different screens at the same time and then combine

them at the end. At the time there was not a solution to this problem so I decided

to make it part of my thesis.

 7

1.2.3 DOCUMENTATION FOR NEW DEVELOPERS

A key to building a community of developers for an open source project is to

provide support to new contributors. Having detailed, accessible documentation

is a major way of providing this support.

When I began exploring App Inventor’s source code and setting up a local

version on my machine I became painfully aware of how little documentation was

available for new developers. Since App Inventor had just been released as an

open source project much of the documentation that would typically be available

had not been created yet. Because of this I kept detailed notes on my work and

made a goal to create documentation that would allow new contributors to

replicate my process. With these notes, I created and contributed to a number of

different documents that are being used by current App Inventor developers. The

major document I created was How to Add a Property to a Component but I also

contributed to documents that detailed how to develop App Inventor on a Mac

and how to develop with Eclipse.

In the rest of this document I describes in detail the solutions I developed as well

as the process I went through to reach these solutions. I first discuss adding the

button shape property to App Inventor and creating documentation about the

process to benefit future developers. I then describe creating the project merger

tool and associated documentation as well as how this tool is currently being

utilized.

 8

2. BUTTON SHAPE PROPERTY

The first feature I added to App Inventor was the ability to change the shape of

Button components. Originally the Button component had one default shape,

which used the system’s defaults and varied from device to device. Now the user

has the four options (default, rounded, rectangular, oval) to customize their

interface.

When starting to work on the problem of allowing users to change the shape of

their buttons, it was not my intention that it would be such a major aspect of my

overall thesis. At that time I thought it would be a small, simple change that would

help me learn about the source code and prepare me to do a much larger user

interface change. This began to change relatively quickly after I began

researching the problem.

Right away I realized how little documentation was available to support me in

making this change and that in order to implement my changes I would need to

become very familiar with a number of different areas of the code. This caused

my focus to began to change from adding the property to give the user more

control to documenting the process of adding a property so that it would be faster

and simpler for future developers to add properties.

 9

2.1 SOLUTION

2.1.1 SYSTEM SET UP

Before I could even start working on adding the button shape feature I needed to

set up my system to be able to build and deploy my own version of App Inventor.

This process took me about a week to complete partially because it was my first

time working with a large open source code and partially because of the lack of

documentation.

The first step was getting a copy of the source code. The source code was

housed at Google code and could be cloned using the distributed source control

management tool called Mercurial. While I had previously used similar tools I

had never used Mercurial before and needed to download it and set it up on my

computer. This process was simple and once complete I simply had to use the

following command to copy the code to my computer.

hg clone https://code.google.com/p/app-inventor/

Following installing Mercurial and cloning the source code I went through the

Mercurial start up guide and familiarized myself with its basic commands. I also

installed Mercurialeclipse 1 , a plug in for the Eclipse software to integrate

Mercurial into Eclipse.

The next step was installing and setting up Apache Ant. Ant is a Java library and

command line tool that is needed to build App Inventor as a Java application.

1 http://javaforge.com/project/HGE

 10

While downloading Apache Ant was simple, I had difficultly setting it up on my

computer. The set up requires that the Ant folder be added to my computer’s

path, which I had difficulty doing this until I found a very helpful website2. Once

Ant was installed I was able to generate javadocs for the App Inventor code and

start to explore the classes that would be relevant to adding the button shape

feature.

App Inventor runs using Google App Engine (a platform for developing and

hosting web applications), therefore the next step was to create an App Engine

account and familiarize myself with it. It took me about a day and a half to go

through the tutorials and deploy two example applications. The two example

applications I completed I developed using Eclipse and the App Engine Eclipse

plug in. This did not turn out to be that helpful because I later learned that I could

not set the App Inventor project up as an App Engine project in Eclipse and

therefore could not use the App Engine plug-in. Other than that, through the

tutorials I learned the basics of App Engine and how to set up and maintain

applications that are deployed to App Engine.

In general I used the development environment Eclipse in all of my development

work and since it has both a Mercurial and an App Engine plug-in I wanted my

next step to be importing the App Inventor project into Eclipse. This turned out to

be one the most frustrating parts of the entire project. I started by using the

Mercurialeclipse plug-in to import the project. This seemed be a logical step

2 http://sakibulhasan.wordpress.com/2010/07/30/install-apache-ant-on-mac-os-x/

 11

since this would set up the link to the remote repository and make connecting to

the source code easy. Through this process the project imported to Eclipse

characterized as a “general project”. My first attempt was to convert it to an App

Engine project so that it could use the App Engine plug-in. I was unable to

convert the project so I settled on using Eclipse as an editor and deploying to

App Engine using the command line. While this decision negated the need for

the App Engine plug-in I still had the problem that the project was set up as a

general project and not a Java project. Since the project was not a Java project,

many of Eclipse’s built-in tools and the main reasons I find Eclipse helpful to use

were unavailable. After many different attempts and much research I figured out

how to import App Inventor as a Java project and could take advantage of many

of the editing tools Eclipse has to offer.

The next and final step to setting up the project was to build and deploy my local

version of App Inventor to App Engine. As stated above, I was not able to use

Eclipse’s App Engine plug-in to deploy it so I needed to learn how to do it using

the command line. Luckily, there was already some existing documentation that

explained the necessary steps. Using this documentation, I created two shell

scripts: one for building the project and the second for deploying the project to

App Engine. These scripts are shown in Appendix A – Shell Scripts. Once the

project was deployed to App Engine I was able to visit the url I specified when

setting up App Engine and see my local version of App Engine. At this point I

had my own version of App Inventor running. I had not made any changes to the

code and my version of App Inventor was the same as the most recent public

 12

release. I had also created a detailed step-by-step document of the steps I took

that would allow future developers could benefit from my experience.

2.1.2 LEARNING THE CODE

The App Inventor source code has almost eight hundred files and over one

hundred thousand lines of code. Therefore, after completing the set up my main

focus was figuring out which areas of the code I would be working on and

familiarize myself with them. One major way I accomplished this was by starting

with the Button class and creating static class diagrams of its related classes,

shown in Appendix B – Static Class Diagrams. I also looked at the alignment

property, another Button property similar to shape, and began stepping through

its code.

2.1.3 CHANGE BUTTON SHAPE PROGRAMMATICALLY

Before beginning to change the source code I needed to research and determine

how I was going to actually change the button’s shape programmatically. I had

experience with changing the shape of buttons in Android applications but only

by changing the layout using an xml file. In this case the shape needed to be

changed on the fly and could not be hard coded in as it would be in an xml file.

This turned out to be a very difficult problem to solve because not only did the

shape of the button need to change, but also the ability to change the color and

background image needed to remain. I built an Android app named ButtonStyle

to test all the different methods I tried. These methods and why they would not

work are list in Table 1 below.

 13

Table 1: Button Shape Methods

Method Issue

RoundRectShape() could not set background color

ShapeDrawable() originally thought that could not set background color but later

determined a way

ColorDrawable() could not round corners

PaintDrawable() could not work with the current setBackgroundColor()

Eventually, I found a way to change the color of a ShapeDrawable() which

allowed me to programmatically change the shape of a button. Below, in Figure 2,

are a few lines of code from the ButtonStyle app that successfully change the

button shape and color.

Figure 2: Code excerpt from ButtonStyle

 14

2.1.4 IMPLEMENTING CHANGES TO THE CODE

Once I had a local version of App Inventor running, familiarized myself with the

code and determined how I was going to change the button shape, I was ready

to start working on the source code.

In the sections below I describe the process of adding a shape property with four

options (default, rounded, rectangular and oval), although during the actual

process I started with just two options (default and rounded) and added the

additional two options after the first two were working. I organized the write-up

this way for simplicity and because adding the two additional options were

formulaic. The following sections are general descriptions of my work. For

specific code changes see the diff file in Appendix C – Diff file for CL1 or the

documentation in Appendix D – How to Add a Property to A Component.

2.1.4.1 Properties Panel

The first area I worked on was adding the shape property to the Properties panel

so that testing would be easier. This is the panel in the Design view where the

new shape property is visible to users when a Button component is selected. See

the outlined area in Figure 3 below.

 15

Figure 3: Properties Panel in Design view

The first step was to create a new property editor that offered a drop-down menu

with the four legal shape values: default, rounded, rectangular and oval (as

shown below in Figure 4).

Figure 4: Shape PropertyEditor in the Designer

I did this by creating a new class, YoungAndroidButtonShapeEditor that extends

the ChoicePropertyEditor. Since the new class extended the

ChoicePropertyEditor all it needed to do was define an array of values to be

 16

displayed in the drop-down menu and pass it to the ChoicePropertyEditor

constructor.

After the property editor was created, I added logic to the

YoungAndroidPalettePanel.createPropertyEditor() method so that any time a

component with the shape property is selected in the Design view, the shape

property editor is added to the Properties panel. I then associated the shape

property to all ButtonBase components by adding a setter and getter for the

shape property to the ButtonBase class. Both the setter and getter were marked

with the SimpleProperty annotation and the setter specified that the shape

property used the YoungAndroidButtonShapeEditor.

Once the steps described above were complete the Properties panel displayed

the shape property when a Button component is selected in the Design view.

This change is displayed in Figure 5 below.

 17

Figure 5: Button Property Panel

2.1.4.2 Viewer Panel

The next area I worked on was the Viewer panel. The Viewer panel is also part of

the Design view and it shows what the running app would look like on the device.

Figure 6: Viewer Panel in Design viewbelow shows the Viewer panel outlined in the

Design view.

 18

Figure 6: Viewer Panel in Design view

Now that the shape property would appear in the Properties panel, the Design

view needed to update the appearance when the property changed.

To make this change I first needed to edit the MockButtonBase class. Every

component has a corresponding mock class in the appengine project. For the

ButtonBase component, the corresponding mock class is the MockButtonBase

class. Mock classes are the visual representation of the component in the

Designer, and therefore contain any code to change that visual representation.

All mock classes contain an onPropertyChange() method that is triggered when a

property in the Properties panel is changed. The first step to changing the

MockButtonBase class was to add the shape property to the onPropertyChange()

method, so that when the shape property is changed and the

 19

onPropertyChange() method is called, the onPropertyChange() method knows to

call a new method setShapeProperty() with the shape option that was selected.

The setShapeProperty() will actually change the button’s shape.

The next step was to define the setShapeProperty() so that when it was called

with the shapes listed in Table 2 below, the button in the Viewer panel would

appear as the corresponding image shown in Table 2.

Table 2: Mock Buttons

Shape Image Border Radius

default

n/a

rounded

10 px

rectangular

0 px

oval

equal to the

button’s height

To change the images the setShapeProperty() method simply changed the

border-radius attribute of the button widget that the MockButtonBase created

based on which shape was chosen. For example, if the rounded shape was

 20

chosen, the button widget’s border-radius would be set to 10 px. The border radii

are listed above in Table 2.

The last step was to update any other methods in MockButtonBase that were

affected by the shape change. Since the button shape only changes if there is no

background image, the Shape property and the Image property affect each other.

Therefore, since the setShapeProperty() method was created, the

setImageProperty() method needed to be updated. I updated the

setImageProperty() method so that when a background image is added to a

button, the border radii are set to 0 px and when a background image is removed

the shape was reset to the selected option.

Now, when the shape property is changed in the Properties panel the shape of

the button in the Viewer panel is updated.

2.1.4.3 Android Device

After the button shape was updated in the Viewer panel, the next step was to get

it to update on the Android device. The first step to doing this was changing the

updateAppearance() method in the ButtonBase class so that if the

updateAppearance() method was called on a button that did not have a

background image and that’s chosen shape property was not the default then a

new method setShape() would be called. The new setShape() method used the

knowledge I gained about changing the shape of a button programmatically to

create a drawable with the appropriate shape and color and then set the button’s

background drawable to that new drawable.

 21

2.1.4.4 Version Numbers

The last step to adding the button shape property was to update all the

necessary version numbers. The YaVersion, YoungAndroidFormUpgrader and

BlockSaveFile classes all needed to be updated to reflect the new versions that

were created by my changes.

2.1.4.5 Testing

Once all of the changes described in the previous sections were complete, I built

a new version of App Inventor and deployed it to App Engine using the scripts

described in section 2.1.1. This App Inventor server implemented my button

shape changes and allowed me to test them before they were pushed to the

master version of App Inventor.

First, I tested that when the shape property and other button properties were

changed, the button in the viewer panel changed appropriately. To do this I

created a new project with one Button component and completed the tests

described in Table 3 for each of the shape properties.

Table 3: Button Shape Tests

Test Expected Results
Changed background color to blue. Button’s background would change to

blue and then back to the default color.
Changed background color to default Button’s background would change

back to the default color.
Changed width and height to 90px rectangular: 90px square

rounded: 90px square with rounded
corners
oval: 90px circle
default: depended on system

 22

With background color set to blue and
width and height set to automatic,
added a background image and then
removed it.

Button would take the shape and size
of the image and then when the image
is removed the button would return to
the shape, color and size it was before
the image was added.

With background color set to blue and
width and height set to automatic,
added a background image. Changed
button shape and changed background
color to red. Removed background
image.

Button would take the shape and size
of the image. When color and shape
properties are changed the button
would not change. When image is
removed the button would have then
new shape and will be red.

I then ran the project on an Android device emulator and repeated all tests. I did

this to ensure that the changes would appear correctly on users’ devices.

The tests described in Table 3 were chosen since the shape property changes

the background drawable and therefore affects the background color and image.

It was necessary to determine that different combinations of color, image and

shape would result in the appropriate display.

2.2 CONTINUING PROBLEMS

After my code was reviewed and pushed live it was discover that the changes to

the MockButtonBase did not work for all browsers. Tests showed that the button

shape did not work in the following browsers:

• IE8
• IE7
• Firefox 12 (mac)
• Firefox 5 (PC)
• Firefox 3 (PC)

The shape has been tested and works properly in the following browsers:

 23

• Chrome
• Safari 5
• IE9

The button shape property is changed by changing the CSS3 border-radius

property. According to w3schools3 this property should be supported in the

following browsers:

• IE9+
• Firefox 4+
• Chrome
• Safari 5+
• Opera

Based on the above information, two things need to be determined. First, why the

property change does not work appropriately in Firefox and if there is a

workaround. Second, is it necessary to support IE versions before IE9 and if so

what workarounds are possible. I have not completed these items.

2.3 DOCUMENTATION

As previously stated, a major focus of my work has been documenting the

process of adding the ability to change the shape of a button. I used my notes

from the processes and wrote a document that used adding the shape property

as an example to instruct future developers how to add a property to a

component. This document goes through each step I completed and explains

how and why they were completed. Embedded in the document is also all of the

code I added to the source code in order to make the change. This document

can be viewed and edited by all members of the App Inventor Development team

3 http://www.w3schools.com/

 24

to insure that it remains up to date and accessible to those that would benefit

from it. A copy of the How to Add a Property to a Component document, as of

9/1/2012, can be found in Appendix D – How to Add a Property to A Component.

2.4 FUTURE BENEFITS

From this project I know first-hand how intimidating and daunting it can feel to

start contributing to an open source project, especially one with as large and

complicated source code as App Inventor. A major way of supporting new

developers and keeping them interested in contributing to App Inventor is to

provide documentation and instruction for tasks that they are likely to need to

complete.

The documentation I developed provides clear instructions that a developer can

follow to add a new property to a component. With these instructions developers

will be able to implement changes much faster without having to figure out the

whole process by themselves. This documentation will encourage developers to

contribute to App Inventor and the more contributors there are, the faster App

Inventor can grow and the more expansive the software can be.

 25

3. PROJECT MERGING TOOL

The idea began as a simple way to merge two screens from two different App

Inventor projects into one App Inventor project. This was a feature a number of

my Technovation Challenge students requested to help improve their ability to

work as a team. The students wanted to be able to divide up work between

individuals or pairs of individuals so that more than one person could be coding

at a time. This division of work brought up the issue of needing to know how to

program as a team and made it clear that not only was a merger tool needed but

also instructions on how to team program in App Inventor.

3.1 SOLUTION PROCESS

3.1.1 MANUAL MERGE

My first step was to merge two simple projects manually. It was necessary to

start here so that I could learn all about the different parts of a project file and

what files would need to be merged and which would not.

In App Inventor I created two new projects that I wanted to merge into one. The

first project, Test1, had only a Screen1. Screen1 had a button that when pressed

opened Screen3 (which did not exist in Test1). The second project, Test2, had a

Screen1 and a Screen3. Screen1 was blank and had no block logic, it was only

included because App Inventor requires that all projects have a Screen1.

Screen3 had an image (goblue.png) and a button that when pressed closed

Screen3 and went back to Screen1. The project created from the merge would

be Test3. This project would have Screen1 from Test1 and Screen3 from Test2.

 26

When the button on Screen1 is pressed it goes to Screen3 where the goblue

asset is visible and when the button on Screen3 is pressed it will go back to

Screen1.

App Inventor allows users to download the project files (or source file) for their

projects, which can then be reloaded. I downloaded the project files for Test1

and Test2 and their structures are displayed below in Figure 7.

Figure 7: Test1 and Test2 project file structures

The assets folders hold all files that have been uploaded to the project as an

asset. If no assets are associated with a project then there will be no assets

folder. The src/appinventor/ai_[User_Name]/[project_name] folder holds a .blk file

and a .scm file for every screen in that project. For example every project will

have a Screen1.blk file and a Screen1.scm file. The Screen1.blk file holds all

information about the blocks associated with Screen1 and the Screen1.scm file

holds information about the layout of Screen1. The youngandroidproject folder

 27

holds only one file, the project.properties file. This file holds basic information

about the project, such as name, main screen and file structure.

From exploring the existing project files I determined that in order to merge these

two projects I would need to create a new Test3.zip file with the same structure

that is described above. This zip file would be a new project file that would hold

the information that was needed from each of the original projects.

One question I still had was what project.properties file to put in the new project

file or if a new file needed to be created. From talking to Liz Looney, a Google

employee who was on the original of App Inventor team, I learned that the

project.properties file was recreated when a project is loaded into App Inventor

and therefore it did not matter which project.properties file was used. It didn’t

even matter if the file was blank as long as one existed in the file structure.

I created Test3.zip using the following steps:

1. Unzipped Test1.

2. Duplicated the unzipped Test1 folder and named it Test3.

3. Unzipped Test2.

4. Copied the assets folder from Test2 into Test3.

5. Copied the Screen3.scm and Screen3.blk in the

Test3/src/appinventor/ai_Feeney_Kate/Test1 folder.

6. Compressed the Test3 folder.

I then attempted to upload Test3.zip to App Inventor as a new project but

received an error stating, “The selected project is not a project source file! Project

 28

source files are zip files.” After doing a number of different tests it was

determined that the error was caused because when the folder was zipped the

file structure was being changed so that the first level in the directory was a

Test3 folder instead of the assets, src and youndandroid folders. To fix this,

instead of compressing the Test3 folder I compressed the three folders inside the

Test3 folder into a zip file named Test3.zip

I tried again to upload Test3.zip to App Inventor and this time it was successful. A

new project was created in App Inventor named Test3 and it had the Screen1

from Test1 and the Screen3 from Test3. The goblue assets from Test3 was listed

in Test3’s list of assets and appeared on Screen3.

The next step was to test that the blocks logic still worked and that when the

button on Screen1 was pressed Screen3 appeared and vice versa. In order to

test this the app must be packaged and installed on the phone. When I attempted

to package the app for the phone it failed. Again after much testing and preparing

the bug report provided in Appendix E – Bug Report, I determined the cause of the

error to be the process of zipping the file. The software I was using to zip the file

was adding extra data into the zip file, which was causing the error. I downloaded

new software for zipping files, rezipped the folders with the new software,

uploaded the project to App Inventor and then packaged the app for the phone.

This time the app packaged correctly and I was able to confirm that the blocks

logic was intact and that I had successfully manually merged to projects.

 29

3.1.2 COMMAND LINE MERGE

The next step was to create a command based Java application that could be run

through the command line. I started with this limited scope so that I could focus

on the back end code before working on the user interface. The most difficult

aspect of creating the application was learning how to work with zip files through

the command line. After looking at some example code and javadocs I created a

simple application, called Merge, that prompts the user for the names of the two

project files they would like to merge and the name of the new project that will be

created. The application then lists all the files in each of the original projects and

prompts the user to enter each file they would like include in the new project. The

application then creates a new project file with all the requested files. There is no

error testing in this application it simply does the actual act of reading the original

zip files and copying that data into a new zip file. The code for Merge is displayed

in Appendix F – Merge Code.

3.1.3 AIMERGER

The command line merger completed the tasks I wanted but I also wanted the

merger to follow the ideal of App Inventor, that non-technical people can use it.

Because of this I wanted to create a merger with a simple graphical user

interface (GUI). This became the final step of the merger creation and the

AIMerger tool that is currently used by App Inventor users.

3.1.3.1 Scope

For version 1 of the AIMerger the scope was kept simple. The application needed

to meet the following specifications:

 30

• Allow the user to select two App Inventor projects that have previously

been downloaded from App Inventor to merge.

• Display all assets and screens that are associated with each project

selected.

• To deal with Screen1 conflicts the main project’s Screen1 would

automatically be the Screen1 in the new project. The second project’s

Screen1 would be grayed out and could not be selected to be merged.

• To deal with duplicate names the user could not select two assets or

screens with the same name. They would be given an error and ask to

deselect on of the items if they did select two items with the same name.

• The merged project could be saved under a third file name, preventing the

user from over-writing one of the two original projects.

I also wanted to keep the GUI simple and similar to that of App Inventor. I used a

similar color pallet as used for App Inventor and created a logo using the Android

character and the puzzle piece theme. The AIMerger logo is shown below in

Figure 8.

Figure 8: AIMerger Logo

 31

3.1.3.2 Interface Implementation

First I sketched out a rough idea for the layout. This sketch is shown below in

Figure 9 and is fairly close to the final layout.

Figure 9: Layout Sketch

The top section would be for browsing for and loading the two original projects.

The bottom area would be empty until a project was loaded. Once a project was

loaded its name along with a list of assets and a list of screens would appear in

the bottom. The main project would be on the left and the second project would

be on the right. Each asset and screen listed would have a checkbox next to it.

Once both projects were loaded and visible in the lower area, arrows and a

merge button would appear between the two projects indicating that it was now

possible to merge them.

 32

I decided to build the application’s user interface using Java’s Swing toolkit.

Swing is the primary Java toolkit for building GUIs and includes in its libraries

many of the components I needed to implement. I had very limited previous

experience with Swing and before I started creating the AIMerger interface I

needed to do a number of tutorials [Trail: Graphical User Interfaces (The Java™

Tutorials), 2012] and look through a few example projects.

The code behind the interface is rather simple but implementing it was a very

time consuming part of creating the AIMerger. The most difficult part was

implementing the checkbox lists for the assets and screens. The Swing library

dose not have a built in class that would allow me to create a scrollable list of

checkboxes with the names of the screens and assets. I struggled to find a

solution to this problem until I found some example code that solved a similar

problem [Harmon, 2012]. This solution created a class that customized Swing’s

list component and I was able to use it as a base to create my own similar class

with the required features. The final interface with two projects loaded is shown

below in Figure 10.

 33

Figure 10: AIMerger Interface

3.1.3.3 Backend Implementation

The structure of the code consists of five classes: AIMerger, AIProject, AIAsset,

AIScreen and CheckBoxList. The complete code is available in a public

repository at github4. The static class diagram is shown in Figure 11.

4 https://github.com/AIMerger/AIMerger.git

 34

Figure 11: App Inventor Merger Package Diagram

AIMerger is the main class and when the application is launched a new instance

of the AIMerger class is created, which displays the startup interface and allow

the user to browse for the original projects.

Each time a project is loaded the AIMerger class creates a new instance of the

AIProject class. The AIProject class’ constructor cycles through all the file in the

project zip file and for each file determines if it is a screen, an asset, a

project.properties file, or some other file. If the file is a screen then a new

instance of the AIScreen class is created with the file’s path and it is added to the

AIProject’s list of screens. If the file is an asset then a new instance of the

AIAsset class is created with the file’s path and it is added to the AIProject’s list

of assets. If the file is a project.properties file then its path is assigned to the

AIProject field, properitesFilePath. All other files are ignored. The AIMerger class

 35

then displays the screens and assets lists form the AIProject in the lower half of

the interface.

Once both original projects are loaded the merge button is made visible. When

the merge button is pressed the AIMerger class creates two lists, one for each

project, which contain the list of file paths for the files to be merged from the

project. These lists are filled by going through the list of checked items from the

CheckBoxList and adding each items path. The project.properties file from the

main project is also added to the respective list.

The AIMerger class then prompts the user for the path of the new merged project

and a new zip file is created using the returned path. Both list of file path are

cycled through and each file is written to the new zip file resulting in a new

project file with all the selected screens and assets.

The user is then informed that the projects were successfully merged and asked

if they would like to merge another project. If the user clicks no, then the

application is closed. If the user clicks yes, then they are asked if they would like

to use the new project that was created by the previous merge in the next merge.

If the user selects no, then the application is restarted as if it were just opening. If

the user selects yes, then the application is restarted with the new project is

displayed as the main project and an AIProject is created.

3.1.3.4 Testing

I tested the application as I finished each section. First, I tested the browse

buttons by checking that the following statements were true:

 36

• When the browse button is selected the file selector dialog box appears.

• If the associated text box is empty prior to the browse button being

selected,

o then when a file is selected and the Cancel button is clicked the text

box remains empty.

o then when a file is selected and the Open button is clicked the text

box is filled with the absolute path of the file selected.

• If the associated text box is not empty prior to the browse button being

selected,

o then when a file is selected and the Cancel button is clicked the text

box remains as it was before the browse button was selected.

o then when a file is selected and the Open button is clicked the

previous content of the text box is replaced with the absolute path

of the file selected.

Then I tested the load buttons by checking that the following statements were

true:

• If Load is clicked when the associated text box is empty, an error will be

given.

• If Load is clicked when the associated text box contains the path to an

invalid project (dose not exist, not a zip file, or no properties file), an error

will be given.

• If Load is clicked when the associated text box contains the path to a valid

project, the project will appear in the lower half of the screen.

 37

• If two valid projects are loaded, the merge button will appear.

I then tested that the projects appeared in the lower section correctly. I did this by

downloading the source code for four projects from App Inventor and then loaded

these projects into the merger. Once the projects were loaded into the merger I

confirmed that all the screens and assets appeared. The four projects were as

follows: only screen1 no assets, only screen1 with assets, multiple screens no

assets, and multiple screens with assets.

After the user interface appeared to be working properly I tested that the merge

process was also working correctly. I did this by creating two projects using the

merger and confirmed that they worked properly.

The first project merged together three projects to create one three-screen

project. This app’s main screen had two buttons and a textbox. When the first

button was clicked, screen2 appeared which had an image and a back button.

When the back button was clicked the main screen appeared again. When the

second button was clicked, screen3 appeared with a textbox and an Ok button.

When text was entered in the textbox and Ok was clicked, screen1 reappeared

and the textbox on screen1 would then be filled with what was entered in the

textbox from screen3. Each screen was originally its own project. This test

showed that logic to call a new screen and to pass a value to a screen was still

valid after the merge process.

The second project I tested confirmed that merged screens with a shared tinydB

would still work properly after the merge. To test this I merged two projects into

 38

one. The first project had a screen1 that had two textboxes and two buttons. The

first textbox was for entering the key for the tinydB and the second textbox was

for entering the value. The first button submitted the data to the tinydB and the

second button switched to screen2. The second project contained screen2. This

screen had one textbox, one label and one button. When a key value was

entered into the textbox and the button was clicked, the associated value would

be retrieved. After merging the two projects, I had one project with two screens. I

could submit a value to the tinydB on screen1 then switch to screen2 and retrieve

that value. This showed that merging projects that used a shared tinydB was

possible with the AIMerger.

I completed all of the above tests on my personal machine running Mac OS X

version 10.6.8 and Java 1.6.0_33. Then I opened the merger application and

loaded projects using a Windows setup and an Ubuntu setup to confirm that the

user interface appeared correctly for both operating systems. Three other

members of the App Inventor Developers group using both Mac and Ubuntu

systems also tested the application and no issues were discovered.

3.2 DOCUMENTATION

After completing the AIMerger the next step was to create instructions for both

using the AIMerger and for developing with App Inventor as a team. This

document used an example of two developers working on one app with two

screens. It details discussions that need to be had in the team before any

 39

programing is started, how to set up each individual project and then how to

merge those projects using the AIMerger. The complete documentation is in

Appendix G – AIMerger Documentation.

3.3 BUGS

After releasing the first version of the AIMerger to a limited group of users, I

received feedback from one user. He reported two different bugs he discovered

while using the AIMerger. The first bug was that when merging a third project, he

would sometimes get an error that duplicate assets or screens were selected

when it was actually not the case. The other bug was that he was unable to save

a new project when running the AIMerger on a PC.

Based on the information provided by the user, I was able to duplicate issues and

determine their causes. For the first bug, the issue was that when the AIMerger

was reset to merge the third project the lists that held the selected assets and

screens were not cleared. The second bug was caused because Windows

machines return a path separated by ‘\’ and the merger code expected paths to

be separated by ‘/’. Both of these fixes were simple and required very few

changes to the code. I made the changes and released a new version of the

AIMerger

3.4 PRESENTATION

During the 2012 App Inventor Summit at MIT I was given the opportunity to

present the work I had completed on the AIMerger. I showed a demo of the

application and talked about the documentation I had put together. My audience

 40

was mostly comprised of educators who were using App Inventor in their

classrooms or programs. The audience also included other developers and users

of App Inventor. There was much excitement about the AIMerger and a number

of audience members said that this tool would be very helpful in their use of App

Inventor.

3.5 FUTURE IMPROVEMENTS

Below is a list of improvements and features I would like to see added to the next

version of the App Inventor Merger.

• Show which assets are associated with which screens.

• Not require assets be selected, have assets auto-merged based on

selected screens.

• Integrate with App Inventor so that projects don’t need to be downloaded

from App Inventor, merged and then reloaded. Make it so that the user

can select two projects from the projects list in App Inventor and be taken

to a merger screen and then the new project is automatically added to the

projects list.

• Deal with file name conflicts; allow the user to rename one of the items.

• Let the user select which Screen1 is used in the new project and verify

that there is a Screen1.

• Allow user to overwrite one of the original projects with the new project.

• Make dividing projects an explicit option.

 41

3.6 FUTURE BENEFITS

The AIMerger and subsequent documentation is only the beginning of

encouraging team development with App Inventor but it does make it a lot more

possible. Most apps are created in teams and it is important that when learning to

use App Inventor there are also tools to learn to program as a team. My work will

make it easier for programs in which students are working with each other toward

a common goal. When only one person in a group can be programming at a time

it is easy to rely only on your strongest programmers to do the work, but this

leaves behind the rest of the group. By making it possible for more developers to

contribute it increases the amount that everyone in the group learns from the

project.

 42

4. CONCLUSION

App Inventor is an innovative product that has influenced many people’s lives

and has the potential to impact many more. It is a great tool for engaging groups

that are typically underrepresented in the computer science field and

encouraging them to feel as if they can be producers of technology instead of

only consumers. I have seen firsthand the impact that this project has made on

young women’s lives and it is important to me that it continues to broaden its

utility.

When App Inventor became an open-source project, it gained the potential to

grow exponentially. In order for it to continue to reach its goals, it needs to

continue to create and maintain a strong community base. A key to creating a

community is to encourage collaboration and share knowledge amongst

developers. It must be relatively simple for a developer to get involved with the

project and make simple changes in order to relieve stress and allow core

developers to make major changes. By developing documentation around the

process of adding a property to an existing component, future developers will be

able to complete this task and make small but important changes to the project.

Having this documentation available to new developers helps them feel

supported and motivates them to continue to contribute and to create their own

documentation.

App Inventor is used to teach users how to develop their own Android apps as

well as to give an introduction to basic computer science concepts. Part of

 43

learning to develop apps is learning to develop as a team. Collaboration is

necessary and expected in the computer science workplace and can bring

together many different perspectives for the benefit of one project. App Inventor

Merger creates a way to develop as a team using App Inventor and allows

groups to share programming opportunities. Prior to the merger, only one

member of the team could be programming on the project at one time. Now, all

members of a team can be programming simultaneously. This keeps everyone

engaged with the project and encourages discussion.

More tools are necessary to improve the ability of both developers of App

Inventor and developers using App Inventor to collaborate and build community.

This thesis has contributed two such changes in the hope that App Inventor will

continue to be an engaging, innovative way to introduce computer science

concepts to a wide population.

 44

APPENDIX A – SHELL SCRIPTS

buildai.sh – script to build my local version of App Inventor

#!/bin/bash

cd /Users/KateFeeney/Documents/workspace/app-inventor/appinventor
ant

updateai.sh – script to deploy local App Inventor to App Engine

#!/bin/bash

cd /Users/KateFeeney/Documents/workspace/app-
inventor/appinventor/appengine/build

java -cp
/Applications/eclipse/plugins/com.google.appengine.eclipse.sdkbundle_1.
6.3.v201202290255r37/appengine-java-sdk-1.6.3/lib/appengine-tools-
api.jar com.google.appengine.tools.admin.AppCfg -A feeney-ka update war

rollbackai.sh – script to clear a previous update that did not successfully complete

#!/bin/bash

cd
/Users/KateFeeney/Documents/School/Mills/Thesis/AddingAProperty/ShowPro
p/app-inventor/appinventor/appengine/build
java -cp
/Applications/eclipse/plugins/com.google.appengine.eclipse.sdkbundle_1.
6.3.v201202290255r37/appengine-java-sdk-1.6.3/lib/appengine-tools-
api.jar com.google.appengine.tools.admin.AppCfg -A feeney-ka rollback
war

 45

APPENDIX B – STATIC CLASS DIAGRAMS

 46

 47

APPENDIX C – DIFF FILE FOR CL1

diff -r 6a6acbed906d
appinventor/appengine/src/com/google/appinventor/client/OdeMessages.java
--- a/appinventor/appengine/src/com/google/appinventor/client/OdeMessages.java
+++ b/appinventor/appengine/src/com/google/appinventor/client/OdeMessages.java
@@ -358,6 +358,24 @@
 @Description("Text for text alignment choice 'right'")
 String rightTextAlignment();

+ // Used in
editor/youngandroid/properties/YoungAndroidButtonShapeChoicePropertyEditor.java
+
+ @DefaultMessage("default")
+ @Description("Text for button shape choice 'default'")
+ String defaultButtonShape();
+
+ @DefaultMessage("rounded")
+ @Description("Text for button shape choice 'rounded'")
+ String roundedButtonShape();
+
+ @DefaultMessage("rectangular")
+ @Description("Text for button shape choice 'rectangular'")
+ String rectButtonShape();
+
+ @DefaultMessage("oval")
+ @Description("Text for button shape choice 'oval'")
+ String ovalButtonShape();
+

diff -r 6a6acbed906d
appinventor/appengine/src/com/google/appinventor/client/editor/simple/component
s/MockButtonBase.java

a/appinventor/appengine/src/com/google/appinventor/client/editor/simple/compone
nts/MockButtonBase.java
+++
b/appinventor/appengine/src/com/google/appinventor/client/editor/simple/compone
nts/MockButtonBase.java
@@ -31,9 +31,12 @@
 private String imagePropValue;
 private boolean hasImage;

- // We need to maintain this so we can show color only when
+ // We need to maintain these so we can show color and shape only when
 // there is no image.
 private String backgroundColor;
+ // Legal values for shape are defined in
+ // com.google.appinventor.components.runtime.Component.java.
+ private int shape;

 /**
 * Creates a new MockButtonBase component.
@@ -103,7 +106,45 @@
 private void setTextAlignmentProperty(String text) {
 MockComponentsUtil.setWidgetTextAlign(buttonWidget, text);
 }
+ /*
+ * Sets the button's Shape property to a new value.
+ */
+ private void setShapeProperty(String text) {
+ shape = Integer.parseInt(text);
+ // Android Buttons with images take the shape of the image and do not

 48

+ // use one of the defined Shapes.
+ if (hasImage) {
+ return;
+ }
+ switch(shape) {
+ case 0:
+ // Default Button
+ DOM.setStyleAttribute(buttonWidget.getElement(), "border-radius",
"0px");
+ break;
+ case 1:
+ // Rounded Button.
+ // The corners of the Button are rounded by 10 px.
+ // The value 10 px was chosen strictly for style.
+ // 10 px is the same as ROUNDED_CORNERS_RADIUS defined in
+ // com.google.appinventor.components.runtime.ButtonBase.
+ DOM.setStyleAttribute(buttonWidget.getElement(), "border-radius",
"10px");
+ break;
+ case 2:
+ // Rectangular Button
+ DOM.setStyleAttribute(buttonWidget.getElement(), "border-radius",
"0px");
+ break;
+ case 3:
+ // Oval Button
+ String height = DOM.getStyleAttribute(buttonWidget.getElement(),
"height");
+ DOM.setStyleAttribute(buttonWidget.getElement(), "border-radius",
height);
+ break;
+ default:
+ // This should never happen
+ throw new IllegalArgumentException("shape:" + shape);
+ }
+ }
+
 /*
 * Sets the button's BackgroundColor property to a new value.
 */
@@ -169,6 +210,7 @@
 hasImage = false;
 url = "";
 setBackgroundColorProperty(backgroundColor);
+ setShapeProperty(Integer.toString(shape));
 } else {
 hasImage = true;
 // Android Buttons do not show a background color if they have an image.
@@ -177,6 +219,7 @@
 // setting the widget's background color to COLOR_NONE.
 MockComponentsUtil.setWidgetBackgroundColor(buttonWidget,
 "&H" + COLOR_NONE);
+ DOM.setStyleAttribute(buttonWidget.getElement(), "border-radius",
"0px");
 }
 MockComponentsUtil.setWidgetBackgroundImage(buttonWidget, url);
 image.setUrl(url);
@@ -269,6 +312,8 @@
 refreshForm();
 } else if (propertyName.equals(PROPERTY_NAME_TEXTCOLOR)) {
 setTextColorProperty(newValue);
+ } else if (propertyName.equals(PROPERTY_NAME_BUTTONSHAPE)){
+ setShapeProperty(newValue);
 }
 }

 49

 }
diff -r 6a6acbed906d
appinventor/appengine/src/com/google/appinventor/client/editor/simple/component
s/MockVisibleComponent.java

a/appinventor/appengine/src/com/google/appinventor/client/editor/simple/compone
nts/MockVisibleComponent.java
+++
b/appinventor/appengine/src/com/google/appinventor/client/editor/simple/compone
nts/MockVisibleComponent.java
@@ -19,6 +19,7 @@

 // Common property names (not all components support all properties).
 protected static final String PROPERTY_NAME_TEXTALIGNMENT = "TextAlignment";
+ protected static final String PROPERTY_NAME_BUTTONSHAPE= "Shape";
 protected static final String PROPERTY_NAME_BACKGROUNDCOLOR =
"BackgroundColor";
 protected static final String PROPERTY_NAME_BACKGROUNDIMAGE =
"BackgroundImage";
 protected static final String PROPERTY_NAME_ENABLED = "Enabled";
diff -r 6a6acbed906d
appinventor/appengine/src/com/google/appinventor/client/editor/youngandroid/pal
ette/YoungAndroidPalettePanel.java

a/appinventor/appengine/src/com/google/appinventor/client/editor/youngandroid/p
alette/YoungAndroidPalettePanel.java
+++
b/appinventor/appengine/src/com/google/appinventor/client/editor/youngandroid/p
alette/YoungAndroidPalettePanel.java
@@ -13,6 +13,7 @@
 import
com.google.appinventor.client.editor.youngandroid.properties.YoungAndroidAlignm
entChoicePropertyEditor;
 import
com.google.appinventor.client.editor.youngandroid.properties.YoungAndroidAssetS
electorPropertyEditor;
 import
com.google.appinventor.client.editor.youngandroid.properties.YoungAndroidBoolea
nPropertyEditor;
+import
com.google.appinventor.client.editor.youngandroid.properties.YoungAndroidButton
ShapeChoicePropertyEditor;
 import
com.google.appinventor.client.editor.youngandroid.properties.YoungAndroidColorC
hoicePropertyEditor;
 import
com.google.appinventor.client.editor.youngandroid.properties.YoungAndroidCompon
entSelectorPropertyEditor;
 import
com.google.appinventor.client.editor.youngandroid.properties.YoungAndroidFontTy
pefaceChoicePropertyEditor;
@@ -169,6 +170,8 @@
 return new YoungAndroidAlignmentChoicePropertyEditor();
 } else if (editorType.equals("typeface")) {
 return new YoungAndroidFontTypefaceChoicePropertyEditor();
+ } else if (editorType.equals("buttonshape")){
+ return new YoungAndroidButtonShapeChoicePropertyEditor();
 } else {
 return new TextPropertyEditor();
 }
diff -r 6a6acbed906d
appinventor/appengine/src/com/google/appinventor/client/editor/youngandroid/pro
perties/YoungAndroidButtonShapeChoicePropertyEditor.java
--- /dev/null

 50

+++
b/appinventor/appengine/src/com/google/appinventor/client/editor/youngandroid/p
roperties/YoungAndroidButtonShapeChoicePropertyEditor.java
@@ -0,0 +1,24 @@
+package com.google.appinventor.client.editor.youngandroid.properties;
+
+import static com.google.appinventor.client.Ode.MESSAGES;
+import com.google.appinventor.client.widgets.properties.ChoicePropertyEditor;
+
+/**
+ * Property editor for button shape.
+ *
+ * @author feeney.kate@gmail.com (Kate Feeney)
+ */
+public class YoungAndroidButtonShapeChoicePropertyEditor extends
ChoicePropertyEditor {
+
+ // Button shape choices
+ private static final Choice[] shapes = new Choice[] {
+ new Choice(MESSAGES.defaultButtonShape(), "0"),
+ new Choice(MESSAGES.roundedButtonShape(), "1"),
+ new Choice(MESSAGES.rectButtonShape(), "2"),
+ new Choice(MESSAGES.ovalButtonShape(), "3")
+ };
+
+ public YoungAndroidButtonShapeChoicePropertyEditor() {
+ super(shapes);
+ }
+}
diff -r 6a6acbed906d
appinventor/appengine/src/com/google/appinventor/client/youngandroid/YoungAndro
idFormUpgrader.java

a/appinventor/appengine/src/com/google/appinventor/client/youngandroid/YoungAnd
roidFormUpgrader.java
+++
b/appinventor/appengine/src/com/google/appinventor/client/youngandroid/YoungAnd
roidFormUpgrader.java
@@ -418,6 +418,11 @@
 // No properties need to be modified to upgrade to version 3.
 srcCompVersion = 3;
 }
+ if (srcCompVersion < 4) {
+ // The Shape property was added.
+ // No properties need to be modified to upgrade to version 4.
+ srcCompVersion = 4;
+ }
 return srcCompVersion;
 }

@@ -471,6 +476,11 @@
 // The Open method was added. No changes are needed.
 srcCompVersion = 3;
 }
+ if (srcCompVersion < 4) {
+ // The Shape property was added.
+ // No properties need to be modified to upgrade to version 4.
+ srcCompVersion = 4;
+ }
 return srcCompVersion;
 }

@@ -551,6 +561,11 @@
 // The Open method was added. No changes are needed.
 srcCompVersion = 3;

 51

 }
+ if (srcCompVersion < 4) {
+ // The Shape property was added.
+ // No properties need to be modified to upgrade to version 4.
+ srcCompVersion = 4;
+ }
 return srcCompVersion;
 }

@@ -599,6 +614,11 @@
 // The Open method was added. No changes are needed.
 srcCompVersion = 4;
 }
+ if (srcCompVersion < 5) {
+ // The Shape property was added.
+ // No properties need to be modified to upgrade to version 5.
+ srcCompVersion = 5;
+ }
 return srcCompVersion;
 }

@@ -636,6 +656,11 @@
 // The Open method was added. No changes are needed.
 srcCompVersion = 3;
 }
+ if (srcCompVersion < 4) {
+ // The Shape property was added.
+ // No properties need to be modified to upgrade to version 4.
+ srcCompVersion = 4;
+ }
 return srcCompVersion;
 }

diff -r 6a6acbed906d
appinventor/blockslib/src/openblocks/yacodeblocks/BlockSaveFile.java
--- a/appinventor/blockslib/src/openblocks/yacodeblocks/BlockSaveFile.java
+++ b/appinventor/blockslib/src/openblocks/yacodeblocks/BlockSaveFile.java
@@ -604,6 +604,11 @@
 // No blocks need to be modified to upgrade to version 3.
 blkCompVersion = 3;
 }
+ if (blkCompVersion < 4) {
+ // The Shape property was added.
+ // No blocks need to be modified to upgrade to version 4.
+ blkCompVersion = 4;
+ }
 return blkCompVersion;
 }

@@ -654,6 +659,11 @@
 // The Open method was added, which does not require changes.
 blkCompVersion = 3;
 }
+ if (blkCompVersion < 4) {
+ // The Shape property was added.
+ // No blocks need to be modified to upgrade to version 4.
+ blkCompVersion = 4;
+ }
 return blkCompVersion;
 }

@@ -708,6 +718,11 @@
 // The Open method was added, which does not require changes.
 blkCompVersion = 3;
 }

 52

+ if (blkCompVersion < 4) {
+ // The Shape property was added.
+ // No blocks need to be modified to upgrade to version 4.
+ blkCompVersion = 4;
+ }
 return blkCompVersion;
 }

@@ -755,6 +770,11 @@
 // The Open method was added, which does not require changes.
 blkCompVersion = 4;
 }
+ if (blkCompVersion < 5) {
+ // The Shape property was added.
+ // No blocks need to be modified to upgrade to version 5.
+ blkCompVersion = 5;
+ }
 return blkCompVersion;
 }

@@ -795,6 +815,11 @@
 // The Open method was added, which does not require changes.
 blkCompVersion = 3;
 }
+ if (blkCompVersion < 4) {
+ // The Shape property was added.
+ // No blocks need to be modified to upgrade to version 4.
+ blkCompVersion = 4;
+ }
 return blkCompVersion;
 }

diff -r 6a6acbed906d
appinventor/components/src/com/google/appinventor/components/annotations/Design
erProperty.java

a/appinventor/components/src/com/google/appinventor/components/annotations/Desi
gnerProperty.java
+++
b/appinventor/components/src/com/google/appinventor/components/annotations/Desi
gnerProperty.java
@@ -37,6 +37,7 @@
 static final String PROPERTY_TYPE_TEXT = "text";
 static final String PROPERTY_TYPE_TEXTALIGNMENT = "textalignment";
 static final String PROPERTY_TYPE_TYPEFACE = "typeface";
+ static final String PROPERTY_TYPE_BUTTON_SHAPE = "buttonshape";

 /**
 * Determines the property editor used in the designer.
diff -r 6a6acbed906d
appinventor/components/src/com/google/appinventor/components/common/YaVersion.j
ava

a/appinventor/components/src/com/google/appinventor/components/common/YaVersion
.java
+++
b/appinventor/components/src/com/google/appinventor/components/common/YaVersion
.java
@@ -162,8 +162,14 @@
 // For YOUNG_ANDROID_VERSION 53:
 // - BLUETOOTHCLIENT_COMPONENT_VERSION was incremented to 5.
 // - BLUETOOTHSERVER_COMPONENT_VERSION was incremented to 5.
+ // For YOUNG_ANDROID_VERSION 54:
+ // - BUTTON_COMPONENT_VERSION was incremented to 4.
+ // - CONTACTPICKER_COMPONENT_VERSION was incremented to 4.

 53

+ // - IMAGEPICKER_COMPONENT_VERSION was incremented to 4.
+ // - LISTPICKER_COMPONENT_VERSION was incremented to 5.
+ // - PHONENUMBERPICKER_COMPONENT_VERSION was incremented to 4.

- public static final int YOUNG_ANDROID_VERSION = 53;
+ public static final int YOUNG_ANDROID_VERSION = 54;

 // Blocks Language Version
Number

@@ -275,7 +281,9 @@
 // - The Alignment property was renamed to TextAlignment.
 // For BUTTON_COMPONENT_VERSION 3:
 // - The LongClick event was added.
- public static final int BUTTON_COMPONENT_VERSION = 3;
+ // For BUTTON_COMPONENT_VERSION 4:
+ // - The Shape property was added.
+ public static final int BUTTON_COMPONENT_VERSION = 4;

 public static final int CAMERA_COMPONENT_VERSION = 1;

@@ -302,7 +310,9 @@
 // - The Alignment property was renamed to TextAlignment.
 // For CONTACTPICKER_COMPONENT_VERSION 3:
 // - The method Open was added.
- public static final int CONTACTPICKER_COMPONENT_VERSION = 3;
+ // For CONTACTPICKER_COMPONENT_VERSION 4:
+ // - The Shape property was added.
+ public static final int CONTACTPICKER_COMPONENT_VERSION = 4;

 // For EMAILPICKER_COMPONENT_VERSION 2:
 // - The Alignment property was renamed to TextAlignment.
@@ -333,7 +343,9 @@
 // - The Alignment property was renamed to TextAlignment.
 // For IMAGEPICKER_COMPONENT_VERSION 3:
 // - The method Open was added.
- public static final int IMAGEPICKER_COMPONENT_VERSION = 3;
+ // For IMAGEPICKER_COMPONENT_VERSION 4:
+ // - The Shape property was added.
+ public static final int IMAGEPICKER_COMPONENT_VERSION = 4;

 // For IMAGESPRITE_COMPONENT_VERSION 2:
 // - The Rotates property was added.
@@ -368,7 +380,9 @@
 // - The SelectionIndex read-write property was added.
 // For LISTPICKER_COMPONENT_VERSION 4:
 // - The method Open was added.
- public static final int LISTPICKER_COMPONENT_VERSION = 4;
+ // For LISTPICKER_COMPONENT_VERSION 5:
+ // - The Shape property was added.
+ public static final int LISTPICKER_COMPONENT_VERSION = 5;

 public static final int LOCATIONSENSOR_COMPONENT_VERSION = 1;

@@ -391,7 +405,9 @@
 // - The Alignment property was renamed to TextAlignment.
 // For PHONENUMBERPICKER_COMPONENT_VERSION 3:
 // - The method Open was added.
- public static final int PHONENUMBERPICKER_COMPONENT_VERSION = 3;
+ // For PHONENUMBERPICKER_COMPONENT_VERSION 4:
+ // - The Shape property was added.
+ public static final int PHONENUMBERPICKER_COMPONENT_VERSION = 4;

 // For PLAYER_COMPONENT_VERSION 2:
 // - The Player.PlayerError event was added.

 54

diff -r 6a6acbed906d
appinventor/components/src/com/google/appinventor/components/runtime/ButtonBase
.java

a/appinventor/components/src/com/google/appinventor/components/runtime/ButtonBa
se.java
+++
b/appinventor/components/src/com/google/appinventor/components/runtime/ButtonBa
se.java
@@ -13,7 +13,12 @@
 import com.google.appinventor.components.runtime.util.ViewUtil;
 import android.content.res.ColorStateList;
+import android.graphics.Color;
 import android.graphics.drawable.Drawable;
+import android.graphics.drawable.ShapeDrawable;
+import android.graphics.drawable.shapes.OvalShape;
+import android.graphics.drawable.shapes.RectShape;
+import android.graphics.drawable.shapes.RoundRectShape;
 import android.util.Log;
 import android.view.View;
 import android.view.View.OnClickListener;
@@ -34,7 +39,19 @@
 private static final String LOG_TAG = "ButtonBase";

 private final android.widget.Button view;
+ // Constant for shape
+ // 10px is the radius of the rounded corners.
+ // 10px was chosen for esthetic reasons.
+ private static final float ROUNDED_CORNERS_RADIUS = 10f;
+ private static final float[] ROUNDED_CORNERS_ARRAY = new float[]
{ ROUNDED_CORNERS_RADIUS,
+ ROUNDED_CORNERS_RADIUS, ROUNDED_CORNERS_RADIUS, ROUNDED_CORNERS_RADIUS,
+ ROUNDED_CORNERS_RADIUS, ROUNDED_CORNERS_RADIUS, ROUNDED_CORNERS_RADIUS,
+ ROUNDED_CORNERS_RADIUS };
+
+ // Constant background color for buttons with a Shape other than default
+ private static final int SHAPED_DEFAULT_BACKGROUND_COLOR = Color.LTGRAY;
+
 // Backing for text alignment
 private int textAlignment;

@@ -53,6 +70,9 @@
 // Backing for text color
 private int textColor;

+ // Backing for button shape
+ private int shape;
+
 // Image path
 private String imagePath = "";

@@ -101,6 +121,7 @@
 FontSize(Component.FONT_DEFAULT_SIZE);
 Text("");
 TextColor(Component.COLOR_DEFAULT);
+ Shape(Component.BUTTON_SHAPE_DEFAULT);
 }

 @Override
@@ -160,6 +181,39 @@
 }

 /**
+ * Returns the shape of the button.
+ *

 55

+ * @return one of {@link Component#BUTTON_SHAPE_DEFAULT},
+ * {@link Component#BUTTON_SHAPE_ROUNDED},
+ * {@link Component#BUTTON_SHAPE_RECT} or
+ * {@link Component#BUTTON_SHAPE_OVAL}
+ */
+ @SimpleProperty(
+ category = PropertyCategory.APPEARANCE,
+ userVisible = false)
+ public int Shape() {
+ return shape;
+ }
+
+ /**
+ * Specifies the shape the button. This does not check that the argument is
a legal value.
+ *
+ * @param shape one of {@link Component#BUTTON_SHAPE_DEFAULT},
+ * {@link Component#BUTTON_SHAPE_ROUNDED},
+ * {@link Component#BUTTON_SHAPE_RECT} or
+ * {@link Component#BUTTON_SHAPE_OVAL}
+ *
+ * @throws IllegalArgumentException if shape is not a legal value.
+ */
+ @DesignerProperty(editorType = DesignerProperty.PROPERTY_TYPE_BUTTON_SHAPE,
+ defaultValue = Component.BUTTON_SHAPE_DEFAULT + "")
+ @SimpleProperty(userVisible = false)
+ public void Shape(int shape) {
+ this.shape = shape;
+ updateAppearance();
+ }
+
+ /**
 * Returns the path of the button's image.
 *
 * @return the path of the button's image
@@ -240,25 +294,59 @@
 updateAppearance();
 }

- // Update appearance based on values of backgroundImageDrawable and
backgroundColor.
+ // Update appearance based on values of backgroundImageDrawable,
backgroundColor and shape.
 // Images take precedence over background colors.
 private void updateAppearance() {
- // If there is no background image, the appearance depends solely on the
background color.
+ // If there is no background image,
+ // the appearance depends solely on the background color and shape.
 if (backgroundImageDrawable == null) {
- if (backgroundColor == Component.COLOR_DEFAULT) {
- // Restore original 3D bevel appearance.
- ViewUtil.setBackgroundDrawable(view, defaultButtonDrawable);
+ if (shape == Component.BUTTON_SHAPE_DEFAULT) {
+ if (backgroundColor == Component.COLOR_DEFAULT) {
+ // If there is no background image and color is default,
+ // restore original 3D bevel appearance.
+ ViewUtil.setBackgroundDrawable(view, defaultButtonDrawable);
+ } else {
+ // Clear the background image.
+ ViewUtil.setBackgroundDrawable(view, null);
+ // Set to the specified color (possibly COLOR_NONE for transparent).
+ TextViewUtil.setBackgroundColor(view, backgroundColor);
+ }
 } else {

 56

- // Clear the background image.
- ViewUtil.setBackgroundDrawable(view, null);
- // Set to the specified color (possibly COLOR_NONE for transparent).
- TextViewUtil.setBackgroundColor(view, backgroundColor);
+ // If there is no background image and the shape is something other
than default,
+ // create a drawable with the appropriate shape and color.
+ setShape();
 }
- return;
+ } else {
+ // If there is a background image
+ ViewUtil.setBackgroundImage(view, backgroundImageDrawable);
 }
- ViewUtil.setBackgroundImage(view, backgroundImageDrawable);
 }
+ // Throw IllegalArgumentException if shape has illegal value.
+ private void setShape() {
+ ShapeDrawable drawable = new ShapeDrawable();
+ // Set color of drawable.
+ drawable.getPaint().setColor((backgroundColor == Component.COLOR_DEFAULT)
+ ? SHAPED_DEFAULT_BACKGROUND_COLOR :
backgroundColor);
+ // Set shape of drawable.
+ switch (shape) {
+ case Component.BUTTON_SHAPE_ROUNDED:
+ drawable.setShape(new RoundRectShape(ROUNDED_CORNERS_ARRAY, null,
null));
+ break;
+ case Component.BUTTON_SHAPE_RECT:
+ drawable.setShape(new RectShape());
+ break;
+ case Component.BUTTON_SHAPE_OVAL:
+ drawable.setShape(new OvalShape());
+ break;
+ default:
+ throw new IllegalArgumentException();
+ }
+ // Set drawable to the background of the button.
+ view.setBackgroundDrawable(drawable);
+ view.invalidate();
+ }
+
 /**
 * Returns true if the button is active and clickable.
 *
diff -r 6a6acbed906d
appinventor/components/src/com/google/appinventor/components/runtime/Component.
java

a/appinventor/components/src/com/google/appinventor/components/runtime/Componen
t.java
+++
b/appinventor/components/src/com/google/appinventor/components/runtime/Componen
t.java
@@ -23,7 +23,15 @@
 static final int ALIGNMENT_NORMAL = 0;
 static final int ALIGNMENT_CENTER = 1;
 static final int ALIGNMENT_OPPOSITE = 2;
-
+
+ /*
+ * Button shape.
+ */
+ static final int BUTTON_SHAPE_DEFAULT = 0;

 57

+ static final int BUTTON_SHAPE_ROUNDED = 1;
+ static final int BUTTON_SHAPE_RECT = 2;
+ static final int BUTTON_SHAPE_OVAL = 3;
+
 /*
 * Color constants.
 */

 58

APPENDIX D – HOW TO ADD A PROPERTY TO A

COMPONENT

How to Add a Property to a
Component

Created by Kate Feeney

This document describes how to add a new property to an existing App Inventor
component.

1. Adding a Property to the Properties Panel
1.1 PropertyEditors
1.2 Creating a New PropertyEditor
1.2.1 Creating the new PropertyEditor class
1.2.2 Adding the New PropertyEditor to the Properties Panel
1.3. Associate the Property with the Component
2. Changing the Designer View When a Property Changes
2.1 Change Component’s Attributes
2.2 Update onPropertyChange Method
2.3 Update Any Other Necessary Methods
3. Changing the Android Representation of the Component
3.1. Button Shape Example
4. Update Version Numbers
4.1 YaVersion
4.2 YoungAndroidFormUpgrader
4.3 BlockSaveFile

As an example, we will show how the Shape property was added to the ButtonBase
component. ButtonBase is an abstract superclass of the Button and the Picker
components (ContactPicker, ImagePicker and ListPicker); therefore, all properties
defined for ButtonBase are also defined for Button and Picker. Originally the
ButtonBase component had no Shape property; it simply used the default shape, which
uses the system’s defaults and varies from device to device. When the Shape property
was added, four choices (default, rounded, rectangular and oval) were included. All
examples in this document show the Button component but would be the same for any
of the Picker components.

The user will first see the new property in the Button component's Properties panel in the
Designer. Because the choices should be restricted to the four legal values, we will
create a PropertyEditor that limits the choices to these values and maps them to integers

 59

for the internal representation of the property. When the user changes the value of the
Shape property, the visual representation of the Button component in the Designer must
change so that the user can preview the interface. To do this we will create a method
that will change the attributes of the GWT button widget that represents the Button
component in the Designer. Finally, since the user ultimately wants the property
changed on their Android device we will add code that changes the Button view’s
BackgroundDrawable depending on which Shape value is selected.

1. Adding a Property to the Properties Panel
The first step is to add the property so that it appears in the Properties panel when a
Button is selected. This change is shown in the image below. Every property is
associated with a PropertyEditor to allow the user to choose among legal values. Often,
an existing PropertyEditor can be used, but in some cases, such as the Shape property,
it will be necessary to create a new one. Finally, we will associate the property with the
component so that the property will appear in the Properties panel when the component
is selected.

Figure 1: Button Property Panel

 60

1.1 PropertyEditors
Each property has a PropertyEditor that controls what values can be specified in the
Designer. Some existing PropertyEditors include the BooleanPropertyEditor (used by
ButtonBase.Enabled), NonNegativeFloatPropertyEditor (used by ButtonBase.FontSize)
and TextPropertyEditor (used by ButtonBase.Text). If a suitable PropertyEditor already
exists (Check if an existing property will meet your needs.), then simply note its name
and skip to Section 1.3. Otherwise a new PropertyEditor needs to be created as
described in Section 1.2.

The PropertyEditor associated with the Shape property must offer a drop-down menu
with the four legal shape values: default, rounded, rectangular and oval (as shown
below). Since this does not already exist, a new PropertyEditor must be created.

Figure 2: Shape PropertyEditor in the Designer

1.2 Creating a New PropertyEditor

1.2.1 Creating the new PropertyEditor class
The new PropertyEditor class must extend the PropertyEditor class and restrict the user
inputs to only legal values. This class will also define how the PropertyEditor is displayed
to the user (drop-down menu, text box, etc.).

For our example the new class will be called
YoungAndroidButtonShapeChoicePropertyEditor and it will extend the
ChoicePropertyEditor class, which itself extends PropertyEditor. This new class must
define an array of Choice objects and pass the array to the ChoicePropertyEditor
constructor, which will create the drop-down choice widget. A Choice is a static class
defined in the ChoicePropertyEditor class and its constructor takes in two strings:
caption and value. The caption string is text to be shown in the drop-down choice
widget. The value string is the value assigned to the property if the choice is selected.
The new class is defined in Figure 4.

The first step is to define the four descriptive strings (caption strings), which are
displayed to the user and will be placed in the array passed to the ChoicePropertyEditor.
This is done by adding the following code to the OdeMessages interface. The reason the
strings are defined in a separate file rather than hard-coded is to support abstraction and
internationalization.

//Used in
editor/youngandroid/properties/YoungAndroidButtonShapeChoicePropertyEditor.java

 61

 @DefaultMessage("default")
 @Description("Text for button shape choice 'default'")
 String defaultButtonShape();

 @DefaultMessage("rounded")
 @Description("Text for button shape choice 'rounded'")
 String roundedButtonShape();

 @DefaultMessage("rectangular")
 @Description("Text for button shape choice 'rectangular'")
 String rectButtonShape();

 @DefaultMessage("oval")
 @Description("Text for button shape choice 'oval'")
 String ovalButtonShape();

Figure 3: Define Strings in OdeMessages class

Now that the strings are defined, the YoungAndroidButtonShapeEditor class can be
created as shown in Figure 4.

package com.google.appinventor.client.editor.youngandroid.properties;

import static com.google.appinventor.client.Ode.MESSAGES;
import com.google.appinventor.client.widgets.properties.ChoicePropertyEditor;

/**
 * Property editor for button shape.
 *
 * @author feeney.kate@gmail.com (Kate Feeney)
 */
public class YoungAndroidButtonShapeChoicePropertyEditor extends
ChoicePropertyEditor {
 // Button shape choices
 private static final Choice[] shapes = new Choice[] {
 new Choice(MESSAGES.defaultButtonShape(), "0"),
 new Choice(MESSAGES.roundedButtonShape(), "1")
 new Choice(MESSAGES.rectButtonShape(), "2"),
 new Choice(MESSAGES.ovalButtonShape(), "3")
 };

 public YoungAndroidButtonShapeChoicePropertyEditor() {
 super(shapes);
 }
}

Figure 4: YoungAndroidButtonShapeEditor class

The value strings (e.g., “0”, “1”, “2”, “3” in Figure 4) will be assigned to the property and
can be accessed via the component’s getters and setters. When the string is retrieved
by the component’s getter it will be retrieved as an int for which constants should be
defined in the Component class. We will define the constants in the Component class
since all components inherit from it. Therefore the following code (Figure 5) is to be
added.

 62

 /*
 * Button Shapes.
 */
 static final int BUTTON_SHAPE_DEFAULT = 0;
 static final int BUTTON_SHAPE_ROUNDED = 1;
 static final int BUTTON_SHAPE_RECT = 2;
 static final int BUTTON_SHAPE_OVAL = 3;

Figure 5: Define value Strings in the Component class

1.2.2 Adding the New PropertyEditor to the Properties Panel
The YoungAndroidPalettePanel class creates the component palette on the left side of
the Designer and instantiates the components’ PropertyEditors. We need to add the
logic to do this in the createPropertyEditor() method. First, we need to define a constant
for the property in the propertyTypeContants class. Add the following code.

 /**
 * Button shapes. * @see
com.google.appinventor.client.editor.youngandroid.properties.

 * YoungAndroidButtonShapeChoicePropertyEditor
 */
 public static final String PROPERTY_TYPE_BUTTON_SHAPE = "button_shape";

Then add the following case to the createPropertyEditor() method inside the same class.

 } else if
(editorType.equals(PropertyTypeConstants.PROPERTY_TYPE_BUTTON_SHAPE)) {
 return new YoungAndroidButtonShapeChoicePropertyEditor();

Figure 6: Addition to YoungAndroidPalettePanel.createPropertyEditor()

1.3. Associate the Property with the Component
Create a setter and a getter method for the new property in the component’s class. Both
the setter and the getter methods must be marked with the SimpleProperty annotation.
The SimpleProperty annotation consists of a description, the property’s category and
whether or not the property is visible (visible in the BlocksEditor). The setter method
must also be marked with the DesignerProperty annotation. This annotation consists of
the property’s editor type, which is defined in the DesignerProperty annotation, and the
default value of the property.

For this example the following code needs to be added to the ButtonBase class.

This is the getter:
 /**
 * Returns the shape of the button.
 *
 * @return one of {@link Component#BUTTON_SHAPE_DEFAULT},
 * {@link Component#BUTTON_SHAPE_ROUNDED},
 * {@link Component#BUTTON_SHAPE_RECT} or

 63

 * {@link Component#BUTTON_SHAPE_OVAL}
 */
 @SimpleProperty(
 category = PropertyCategory.APPEARANCE,
 userVisible = false)
 public int Shape() {
 return shape;
 }

Figure 7: Shape Getter

This is the setter:
 /**
 * Specifies the shape of the button. This does not check that the argument
 * is a legal value.
 *
 * @param shape one of {@link Component#BUTTON_SHAPE_DEFAULT},
 * {@link Component#BUTTON_SHAPE_ROUNDED},
 * {@link Component#BUTTON_SHAPE_RECT} or
 * {@link Component#BUTTON_SHAPE_OVAL}
 *
 * @throws IllegalArgumentException if shape is not a legal value.
 */
 @DesignerProperty(editorType = DesignerProperty.PROPERTY_TYPE_BUTTON_SHAPE,
 defaultValue = Component.BUTTON_SHAPE_DEFAULT + "")
 @SimpleProperty(description = "Specifies the button's shape (default, " +
 "rounded, rectangular, oval). The shape will not be visible if an " +
 "Image is being displayed.", userVisible = false)
 public void Shape(int shape) {
 this.shape = shape;
 updateAppearance();
 }

Figure 8: Shape Setter

Then define the variable shape inside the same file with the following code.

 // Backing for button shape
 private int shape;

And add the following line to the ButtonBase constructor.

Shape(Component.BUTTON_SHAPE_DEFAULT);

After implementing the code in this section, the Shape property will appear in the
Properties panel when a Button is selected in the designer view; however, changing the
property does not yet affect the appearance of the Button.

2. Changing the Designer View When a Property Changes

 64

The app’s user interface can be viewed in two locations. The first location is in the
Designer and the second is on the Android device (i.e. phone, tablet or emulator). The
Designer is the view shown in the browser window and is what will be changed in this
section.

Every Component has a corresponding mock class in the appengine project. The mock
class is the visual representation of the component in the Designer, and the mock
classes generally follow the same hierarchy as the Component classes. If your property
changes visual aspects of the component (such as color), then the mock class of that
component must adjust the Designer to show these visual changes.

2.1 Change Component’s Attributes
There are already a number of methods written to change a component’s attributes in
MockComponent, MockComponentsUtil and MockVisibleComponent; most component
mock classes inherit from at least one of these classes.

To change the appearance in the Designer, find the mock class that corresponds to the
component to which the property was added. Determine if the class inherits a method
that changes the appropriate attribute. If such a method exists, then simply write a
method that calls that method with the appropriate arguments, as done in the
setEnabledProperty() method in the MockButtonBase class. If a method doesn’t exist
then follow this Shape property example.

For this example the mock class associated with the ButtonBase component is
MockButtonBase. Figure 9 shows the appearances for each value of the Shape
property.

Shape Image

default

rounded

rectangular

oval

Figure 9: Mock Buttons

 65

Mock components are built on top of GWT widgets. The MockButtonBase creates a
button widget which uses the system’s defaults and in order to make the above shapes
the button’s corner radii needs to be changed. There does not already exist a method in
MockButtonBase or any of its superclasses that could change a button’s corner radii, so
the following method (Figure 10) needs to be added to MockButtonBase.

 // Legal values for shape are defined in
 // com.google.appinventor.components.runtime.Component.java.
 private int shape;

 /*
 * Sets the button's Shape property to a new value.
 */
 private void setShapeProperty(String text) {
 shape = Integer.parseInt(text);
 // Android Buttons with images take the shape of the image and do not
 // use one of the defined Shapes.
 if (hasImage) {
 return;
 }
 switch(shape) {
 case 0:
 // Default Button
 DOM.setStyleAttribute(buttonWidget.getElement(), "border-radius",

 "0px");
 break;
 case 1:
 // Rounded Button.
 // The corners of the Button are rounded by 10 px.
 // The value 10 px was chosen strictly for style.
 // 10 px is the same as ROUNDED_CORNERS_RADIUS defined in
 // com.google.appinventor.components.runtime.ButtonBase.java.
 DOM.setStyleAttribute(buttonWidget.getElement(), "border-radius",

 "10px");
 break;
 case 2:
 // Rectangular Button
 DOM.setStyleAttribute(buttonWidget.getElement(), "border-radius",

 "0px");
 break;
 case 3:
 // Oval Button
 String height = DOM.getStyleAttribute(buttonWidget.getElement(),

 "height");
 DOM.setStyleAttribute(buttonWidget.getElement(), "border-radius",

 height);
 break;
 default:
 // This should never happen
 throw new IllegalArgumentException("shape:" + shape);
 }
 }

Figure 10: Addition to MockButtonBase Class

2.2 Update the onPropertyChange Method
Mock component classes contain an onPropertyChange() method which is called by
GWT when any of the component’s properties are changed and it determines how to
change the view in the Designer. The onPropertyChange() method has two string

 66

parameters, the propertyName and the newValue. The propertyName is a string
representation of the name of the method defined in the property’s getter (also the string
displayed in the Properties Panel). The newValue is the value of the property and is
passed to the method that was just created. For this example the propertyName would
be “Shape” and the newValue could be “0”, “1”, “2” or “3”.

There is a list of all the possible propertyName values in the MockVisualComponent
class. The new property needs to be added to the list. For this example add the
following line.

 protected static final String PROPERTY_NAME_BUTTONSHAPE= "Shape";

Now back in the mock component’s class add logic so that if the new property is
changed it will call the method that was just created.

For this example add the following statement to the onPropertyChange() method of the
MockButtonBase class

 } else if
(propertyName.equals(PROPERTY_NAME_BUTTONSHAPE)){
 setShapeProperty(newValue);

Figure 11: Additon to onPropertyChange()

2.3 Update Any Other Necessary Methods
If changing the new property doesn’t affect any other properties then this section is
complete. It might be a good idea to review the methods in the mock component class to
confirm this. If the new property does affect other properties then update the methods
called on those property changes as needed.

For this example, since the button shape only changes if there is no background image,
the Shape property and the Image property affect each other. Therefore, since the
setShapeProperty() method was created (or updated), the setImageProperty() method
needs to be updated.

The following two gray lines need to be added to the setImageProperty() method.

 /*
 * Sets the button's Image property to a new value.
 */
 private void setImageProperty(String text) {
 imagePropValue = text;
 String url = convertImagePropertyValueToUrl(text);
 if (url == null) {
 hasImage = false;
 url = "";
 setBackgroundColorProperty(backgroundColor);
 setShapeProperty(Integer.toString(shape));
 } else {
 hasImage = true;
 // Android Buttons do not show a background color if they have an image.

 67

 // The container's background color shows through any transparent
 // portions of the Image, an effect we can get in the browser by
 // setting the widget's background color to COLOR_NONE.
 MockComponentsUtil.setWidgetBackgroundColor(buttonWidget,
 "&H" + COLOR_NONE);
 DOM.setStyleAttribute(buttonWidget.getElement(), "border-radius", "0px");
 }
 MockComponentsUtil.setWidgetBackgroundImage(buttonWidget, url);
 image.setUrl(url);
 }

Figure 12: Addition to setImageProperty()

Now when the Shape property is changed the button shown in the designer view will
also change to reflect the user’s preference. There will still be no change to the button
on the Android device.

3. Changing the Android Representation of the Component
Next decide how you would like to change the visual representation of the component on
the Android device. Then implement the necessary code inside the class where you
defined the property’s getter and setters.

For the Shape property the component’s BackgroundDrawable needs to be changed to
change the shape. The table below describes how the ButtonBase component is
changed for each Shape.

Shape Image Drawable

default

defaultButtonDrawable or no drawable and set the
background color

rounded

RoundRectShape(CornerArray, null, null)
where CornerArray is and Array of 8 floats each with the

value 10f.

rectangular

RectShape() drawable

oval

OvalShape() drawable

Figure 13: Shape Drawables

The process of changing the component on the Android device is very specific to both
the component being changed and the property being added. Review the methods
currently available to the component and components with similar properties to
determine what code needs to be added or changed.

The next section details the process followed when implementing the Shape property.

3.1. Button Shape Example
In the ButtonBase class add the following constants.

 68

 // Constant for shape
 // 10px is the radius of the rounded corners.
 // 10px was chosen for esthetic reasons.
 private static final float ROUNDED_CORNERS_RADIUS = 10f;
 private static final float[] ROUNDED_CORNERS_ARRAY = new float[] {
 ROUNDED_CORNERS_RADIUS,ROUNDED_CORNERS_RADIUS, ROUNDED_CORNERS_RADIUS,
 ROUNDED_CORNERS_RADIUS,ROUNDED_CORNERS_RADIUS, ROUNDED_CORNERS_RADIUS,
 ROUNDED_CORNERS_RADIUS,ROUNDED_CORNERS_RADIUS };

 // Constant background color for buttons with a Shape other than default
 private static final int SHAPED_DEFAULT_BACKGROUND_COLOR = Color.LTGRAY;

Replace the updateAppearance() method with the following.
 // Update appearance based on values of backgroundImageDrawable,
backgroundColor and
 // shape.
 // Images take precedence over background colors.
 private void updateAppearance() {
 // If there is no background image,
 // the appearance depends solely on the background color and shape.
 if (backgroundImageDrawable == null) {
 if (shape == Component.BUTTON_SHAPE_DEFAULT) {
 if (backgroundColor == Component.COLOR_DEFAULT) {
 // If there is no background image and color is default,
 // restore original 3D bevel appearance.
 ViewUtil.setBackgroundDrawable(view, defaultButtonDrawable);
 } else {
 // Clear the background image.
 ViewUtil.setBackgroundDrawable(view, null);
 // Set to the specified color (possibly COLOR_NONE for transparent).
 TextViewUtil.setBackgroundColor(view, backgroundColor);
 }
 } else {
 // If there is no background image and the shape is something other
 // than default, create a drawable with the appropriate shape and

 // color.
 setShape();
 }
 } else {
 // If there is a background image
 ViewUtil.setBackgroundImage(view, backgroundImageDrawable);
 }
 }

Figure 14: Addition to updateAppearance()

Add the setShape() method with the following.
 // Throw IllegalArgumentException if shape has illegal value.
 private void setShape() {
 ShapeDrawable drawable = new ShapeDrawable();
 // Set color of drawable.
 drawable.getPaint().setColor((backgroundColor == Component.COLOR_DEFAULT)
 ? shapedDefaultBackgroundColor :

 backgroundColor);
 // Set shape of drawable.
 switch (shape) {
 case Component.BUTTON_SHAPE_ROUNDED:
 drawable.setShape(new RoundRectShape(ROUNDED_CORNERS_ARRAY, null,

 null));
 break;
 case Component.BUTTON_SHAPE_RECT:
 drawable.setShape(new RectShape());

 69

 break;
 case Component.BUTTON_SHAPE_OVAL:
 drawable.setShape(new OvalShape());
 break;
 default:
 throw new IllegalArgumentException();
 }
 // Set drawable to the background of the button.
 view.setBackgroundDrawable(drawable);
 view.invalidate();
 }

Figure 15: Addition to setShape()

Now when the Shape of a Button is changed both the Mock button and the Button on the
Android device should change.

4. Update Version Numbers

4.1 YaVersion
The YaVersion class defines the Young Android System version number, Blocks
Language version number and Component version numbers. If the Blocks Language or
any of the Components were updated in the previous sections then their version
numbers and the Young Android System version number needs to be increased. There
are also instructions, in the class, describing updating each of these values.

For the Button Shape example the ButtonBase component was updated, therefore the
ButtonBase component version number needs to be increased along with the version
numbers of components that are subclassed of ButtonBase and the Young Android
System version number. Add the following gray code to the YaVersion class.

 // Young Android System Version Number
 //

 // YOUNG_ANDROID_VERSION must be incremented when either the blocks language
 // or a component changes.
 // TODO(lizlooney) - should this version number be generated so that it is
 // automatically incremented when the blocks language or a component changes?

 // For YOUNG_ANDROID_VERSION 2:
 // - The Logger component was removed. The Notifier component should be used
 // instead.
 // - TINYWEBDB_COMPONENT_VERSION was incremented to 2.
 :
 :
 :
 // For YOUNG_ANDROID_VERSION 54:
 // - BUTTON_COMPONENT_VERSION was incremented to 4.
 // - CONTACTPICKER_COMPONENT_VERSION was incremented to 4.
 // - IMAGEPICKER_COMPONENT_VERSION was incremented to 4.
 // - LISTPICKER_COMPONENT_VERSION was incremented to 5.
 // - PHONENUMBERPICKER_COMPONENT_VERSION was incremented to 4.
 public static final int YOUNG_ANDROID_VERSION = 54;

 70

 // For BUTTON_COMPONENT_VERSION 2:
 // - The Alignment property was renamed to TextAlignment.
 // For BUTTON_COMPONENT_VERSION 3:
 // - The LongClick event was added.
 // For BUTTON_COMPONENT_VERSION 4:
 // - The Shape property was added.
 public static final int BUTTON_COMPONENT_VERSION = 4;

 // For CONTACTPICKER_COMPONENT_VERSION 2:
 // - The Alignment property was renamed to TextAlignment.
 // For CONTACTPICKER_COMPONENT_VERSION 3:
 // - The method Open was added.
 // For CONTACTPICKER_COMPONENT_VERSION 4:
 // - The Shape property was added.
 public static final int CONTACTPICKER_COMPONENT_VERSION = 4;

 // For IMAGEPICKER_COMPONENT_VERSION 2:
 // - The Alignment property was renamed to TextAlignment.
 // For IMAGEPICKER_COMPONENT_VERSION 3:
 // - The method Open was added.
 // For IMAGEPICKER_COMPONENT_VERSION 4:
 // - The Shape property was added.
 public static final int IMAGEPICKER_COMPONENT_VERSION = 4;

 // For LISTPICKER_COMPONENT_VERSION 2:
 // - The Alignment property was renamed to TextAlignment.
 // For LISTPICKER_COMPONENT_VERSION 3:
 // - The SelectionIndex read-write property was added.
 // For LISTPICKER_COMPONENT_VERSION 4:
 // - The method Open was added.
 // For LISTPICKER_COMPONENT_VERSION 5:
 // - The Shape property was added.
 public static final int LISTPICKER_COMPONENT_VERSION = 5;

 // For PHONENUMBERPICKER_COMPONENT_VERSION 2:
 // - The Alignment property was renamed to TextAlignment.
 // For PHONENUMBERPICKER_COMPONENT_VERSION 3:
 // - The method Open was added.
 // For PHONENUMBERPICKER_COMPONENT_VERSION 4:
 // - The Shape property was added.
 public static final int PHONENUMBERPICKER_COMPONENT_VERSION = 4;

Figure 16: Addition to YaVersion Class

4.2 YoungAndroidFormUpgrader
As stated in the instructions in YaVersion, if a component version is updated code must
be added to the YoungAndroidFormUpgrader. For the Button Shape example the
following gray code needs to be added to the YoungAndroidFormUpgrader class.

private static int upgradeButtonProperties(Map<String, JSONValue>
componentProperties,
 int srcCompVersion) {
 if (srcCompVersion < 2) {
 // The Alignment property was renamed to TextAlignment.
 handlePropertyRename(componentProperties, "Alignment", "TextAlignment");
 // Properties related to this component have now been upgraded to version
 // 2.
 srcCompVersion = 2;
 }
 if (srcCompVersion < 3) {

 71

 // The LongClick event was added.
 // No properties need to be modified to upgrade to version 3.
 srcCompVersion = 3;
 }
 if (srcCompVersion < 4) {
 // The Shape property was added.
 // No properties need to be modified to upgrade to version 4.
 srcCompVersion = 4;
 }
 return srcCompVersion;
}

private static int upgradeContactPickerProperties(Map<String, JSONValue>
 componentProperties, int srcCompVersion) {
 if (srcCompVersion < 2) {
 // The Alignment property was renamed to TextAlignment.
 handlePropertyRename(componentProperties, "Alignment", "TextAlignment");
 // Properties related to this component have now been upgraded to version
 // 2.
 srcCompVersion = 2;
 }
 if (srcCompVersion < 3) {
 // The Open method was added. No changes are needed.
 srcCompVersion = 3;
 }
 if (srcCompVersion < 4) {
 // The Shape property was added.
 // No properties need to be modified to upgrade to version 4.
 srcCompVersion = 4;
 }
 return srcCompVersion;
}

private static int upgradeImagePickerProperties(Map<String, JSONValue>
 componentProperties, int srcCompVersion) {
 if (srcCompVersion < 2) {
 // The Alignment property was renamed to TextAlignment.
 handlePropertyRename(componentProperties, "Alignment", "TextAlignment");
 // Properties related to this component have now been upgraded to version
 // 2.
 srcCompVersion = 2;
 }
 if (srcCompVersion < 3) {
 // The Open method was added. No changes are needed.
 srcCompVersion = 3;
 }
 if (srcCompVersion < 4) {
 // The Shape property was added.
 // No properties need to be modified to upgrade to version 4.
 srcCompVersion = 4;
 }
 return srcCompVersion;
}

private static int upgradeListPickerProperties(Map<String, JSONValue>

 72

 componentProperties, int srcCompVersion) {
 if (srcCompVersion < 2) {
 // The Alignment property was renamed to TextAlignment.
 handlePropertyRename(componentProperties, "Alignment", "TextAlignment");
 // Properties related to this component have now been upgraded to version
 // 2.
 srcCompVersion = 2;
 }
 if (srcCompVersion < 3) {
 // The SelectionIndex property was added. No changes are needed.
 srcCompVersion = 3;
 }
 if (srcCompVersion < 4) {
 // The Open method was added. No changes are needed.
 srcCompVersion = 4;
 }
 if (srcCompVersion < 5) {
 // The Shape property was added.
 // No properties need to be modified to upgrade to version 5.
 srcCompVersion = 5;
 }
 return srcCompVersion;
}

private static int upgradePhoneNumberPickerProperties(Map<String, JSONValue>
 componentProperties, int srcCompVersion) {
 if (srcCompVersion < 2) {
 // The Alignment property was renamed to TextAlignment.
 handlePropertyRename(componentProperties, "Alignment", "TextAlignment");
 // Properties related to this component have now been upgraded to version
2.
 srcCompVersion = 2;
 }
 if (srcCompVersion < 3) {
 // The Open method was added. No changes are needed.
 srcCompVersion = 3;
 }ƒ
 if (srcCompVersion < 4) {
 // The Shape property was added.
 // No properties need to be modified to upgrade to version 4.
 srcCompVersion = 4;
 }
 return srcCompVersion;
}

Figure 17: Addition to YoungAndroidFormUpgrader Class

4.3 BlockSaveFile
The BlockSaveFile class must also be updated. If any component version numbers
were increased then add code to upgradeComponentBlocks().

Add the following gray code to upgradeComponentBlocks() for the Button Shape
example.

 73

private int upgradeButtonBlocks(int blkCompVersion, String componentName) {
 if (blkCompVersion < 2) {
 // The Alignment property was renamed to TextAlignment.
 handlePropertyRename(componentName, "Alignment", "TextAlignment");
 // Blocks related to this component have now been upgraded to version 2.
 blkCompVersion = 2;
 }
 if (blkCompVersion < 3) {
 // The LongClick event was added.
 // No blocks need to be modified to upgrade to version 3.
 blkCompVersion = 3;
 }
 if (blkCompVersion < 4) {
 // The Shape property was added.
 // No blocks need to be modified to upgrade to version 4.
 blkCompVersion = 4;
 }
 return blkCompVersion;
}

private int upgradeContactPickerBlocks(int blkCompVersion, String
componentName) {
 if (blkCompVersion < 2) {
 // The Alignment property was renamed to TextAlignment.
 handlePropertyRename(componentName, "Alignment", "TextAlignment");
 // Blocks related to this component have now been upgraded to version 2.
 blkCompVersion = 2;
 }
 if (blkCompVersion < 3) {
 // The Open method was added, which does not require changes.
 blkCompVersion = 3;
 }
 if (blkCompVersion < 4) {
 // The Shape property was added.
 // No blocks need to be modified to upgrade to version 4.
 blkCompVersion = 4;
 }
 return blkCompVersion;
}

private int upgradeImagePickerBlocks(int blkCompVersion, String componentName)
{
 if (blkCompVersion < 2) {
 // The Alignment property was renamed to TextAlignment.
 handlePropertyRename(componentName, "Alignment", "TextAlignment");
 // Blocks related to this component have now been upgraded to version 2.
 blkCompVersion = 2;
 }
 if (blkCompVersion < 3) {
 // The Open method was added, which does not require changes.
 blkCompVersion = 3;
 }
 if (blkCompVersion < 4) {
 // The Shape property was added.
 // No blocks need to be modified to upgrade to version 4.

 74

 blkCompVersion = 4;
 }
 return blkCompVersion;
}

private int upgradeListPickerBlocks(int blkCompVersion, String componentName) {
 if (blkCompVersion < 2) {
 // The Alignment property was renamed to TextAlignment.
 handlePropertyRename(componentName, "Alignment", "TextAlignment");
 // Blocks related to this component have now been upgraded to version 2.
 blkCompVersion = 2;
 }
 if (blkCompVersion < 3) {
 // The SelectionIndex property was added, which does not require changes.
 blkCompVersion = 3;
 }
 if (blkCompVersion < 4) {
 // The Open method was added, which does not require changes.
 blkCompVersion = 4;
 }
 if (blkCompVersion < 5) {
 // The Shape property was added.
 // No blocks need to be modified to upgrade to version 5.
 blkCompVersion = 5;
 }
 return blkCompVersion;
}

private int upgradePhoneNumberPickerBlocks(int blkCompVersion, String
componentName) {
 if (blkCompVersion < 2) {
 // The Alignment property was renamed to TextAlignment.
 handlePropertyRename(componentName, "Alignment", "TextAlignment");
 // Blocks related to this component have now been upgraded to version 2.
 blkCompVersion = 2;
 }
 if (blkCompVersion < 3) {
 // The Open method was added, which does not require changes.
 blkCompVersion = 3;
 }
 if (blkCompVersion < 4) {
 // The Shape property was added.
 // No blocks need to be modified to upgrade to version 4.
 blkCompVersion = 4;
 }
 return blkCompVersion;
}

Figure 18: Addition to BlockSaveFile Class

 75

APPENDIX E – BUG REPORT

I am getting a Build failed! Unexpected problems generating YAIL. error when I
attempt to package a project that I have previously downloaded, unzipped, rezipped
using a Mac, and then uploaded. This error does not occur if I don’t unzip the
downloaded project file before re-uploading it. The new zip file is significantly bigger
than the original one (5,534 bytes vs. 855 bytes) but the uncompressed contents for
the files appear to be the same.

Below are the detailed steps I followed to get this error. I have also attached the
referenced files. Please let me know if you have any suggestions about why this is
happening.

Thanks, Kate

OneScreenOrig - Success

-Created very simple project with only one screen and no assets and no
blocks. OneScreenOrig
-Blocks Editor Opens correctly
-Able to connect and run project on the phone
-Application successfully downloads to phone
-Application successfully downloads to computer. OneScreenOrig.apk
-Source is successfully downloaded to computer. OneScreenOrig.zip

OneScreenOrig (uploaded, not unzipped) - Success
-Delete OneScreenOrig project from MyProjects
-Successfully Uploaded the source to MyProjects. Did not open the zip file.
-Blocks Editor Opens correctly
-Able to connect and run project on the phone.
-Application successfully downloads to phone
-Application successfully downloads to computer. OneScreenOrig(1).apk

OneScreenRezipped (uploaded, not unzipped) - Success
-Copied OneScreenOrig.zip and renamed to copy to
OneScreenRezipped.zip. Still have not opened the zip file
-Successfully Uploaded OneScreenRezipped.zip to MyProjects.
-Using OneScreenRezipped project Blocks Editor Opens correctly
-Able to connect and run project on the phone
-Application successfully downloads to phone
-Application successfully downloads to computer. OneScreenRezipped.apk

OneScreenRezipped (uploaded, unzipped and rezipped) - FAIL
-Delete OneScreenRezipped project from MyProjects
-Renamed OneScreenReziped.zip to OneScreenRezipped1.zip
-Opened the unziped folder, OneScreenRezipped.
-In the folder was a src folder and a youngandroidproject folder.
-Selected both folders, right clicked and selected Compress 2 Items.

 76

-A new zip file, Archive.zip, is created inside the OneScreenRezipped folder.
-Moved Archive.zip outside the OneScreenRezipped folder and renamed it
OneScreenRezipped.zip
-Successfully Uploaded OneScreenRezipped.zip.to MyProjects.
-Blocks Editor Opens correctly
-Able to connect and run project on the phone
-When attempting to download to the connected phone the following error is
received after about 15 seconds.

Build failed! Unexpected problems generating YAIL.
-The debugging message is:
Build of OneScreenRezipped requested at 2012 Mar 26 14:04:21.
Waiting for 10 seconds.

Unexpected problems generating YAIL.

-When attempting to download to this computer the following error is received
after about 15 seconds.

Build failed! Unexpected problems generating YAIL.

 77

APPENDIX F – MERGE CODE

import java.io.BufferedInputStream;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Enumeration;
import java.util.List;
import java.util.zip.ZipEntry;
import java.util.zip.ZipFile;
import java.util.zip.ZipInputStream;
import java.util.zip.ZipOutputStream;

public class Merge {
 static BufferedReader br = new BufferedReader(
 new InputStreamReader(System.in));
 public static final void main(String[] args) {

 try {
 System.out.print("First Project: ");
 String firstProject=readLine();

 System.out.print("Second Project: ");
 String secondProject=readLine();

 System.out.print("Name of Merged Project: ");
 String mergedProject=readLine();

 String outFileName = mergedProject;

 ZipFile inZipFile1 = new ZipFile(firstProject);
 ZipFile inZipFile2 = new ZipFile(secondProject);
 ZipOutputStream outZip = new ZipOutputStream(
 new FileOutputStream(outFileName));
 ZipInputStream inZip1 = new ZipInputStream(new BufferedInputStream(
 new FileInputStream(firstProject)));
 ZipInputStream inZip2 = new ZipInputStream(new BufferedInputStream(
 new FileInputStream(secondProject)));

 List<String> filenamesFromZip1 = new ArrayList<String>();
 List<String> filenamesFromZip2 = new ArrayList<String>();
 byte [] buf = new byte[1024];

 printZipContent(inZipFile1);

 Boolean more = true;
 while(more){
 System.out.print("Enter full name of the file to copy from the " +
 "first Project");
 String file = readLine();
 filenamesFromZip1.add(file);
 System.out.print("Would you like to add another file (Y/N)");
 String input = readLine();
 if(input.equalsIgnoreCase("n")){
 more=false;
 }else if (input.equalsIgnoreCase("y")){
 more=true;
 }else{

 78

 System.out.println(input);
 }
 }

 System.out.println("Now Project Two");
 printZipContent(inZipFile2);

 more=true;
 while(more){
 System.out.print("Enter full name of the file to copy from the " +
 "second Project");
 String file = readLine();
 filenamesFromZip2.add(file);
 System.out.print("Would you like to add another file (Y/N)");
 String input = readLine();
 if(input.equalsIgnoreCase("n")){
 more=false;
 }else if (input.equalsIgnoreCase("y")){
 more=true;
 }else{
 System.out.println(input);
 }
 }

 ZipEntry curEntry;
 while((curEntry = inZip1.getNextEntry())!=null){
 if (filenamesFromZip1.contains(curEntry.getName())){
 //System.out.println(curEntry.getName());
 outZip.putNextEntry(curEntry);
 int len;
 while((len = inZip1.read(buf))>0){
 outZip.write(buf, 0, len);
 }
 outZip.closeEntry();
 inZip1.closeEntry();
 }
 }
 inZip1.close();

 while((curEntry = inZip2.getNextEntry())!=null){
 if (filenamesFromZip2.contains(curEntry.getName())){
 //System.out.println(curEntry.getName());
 outZip.putNextEntry(curEntry);
 int len;
 while((len = inZip2.read(buf))>0){
 outZip.write(buf, 0, len);
 }
 outZip.closeEntry();
 inZip2.closeEntry();
 }
 }
 inZip2.close();

 outZip.close();

 } catch (IOException ioe) {
 System.err.println("Unhandled exception:");
 ioe.printStackTrace();
 return;
 }
 }
 public static void printZipContent(ZipFile zFile){
 System.out.println("List of Files in "+ zFile.getName() +" :");
 Enumeration <? extends ZipEntry> e = zFile.entries();
 while(e.hasMoreElements()){

 79

 System.out.println(e.nextElement().getName());
 }
 }

 public static String readLine(){
 try {
 String str = br.readLine();
 return str;
 } catch (IOException ioe) {
 System.out.println("IO error trying to read the project name!");
 System.exit(1);
 return null;
 }
 }

}

 80

APPENDIX G – AIMERGER DOCUMENTATION

HOW TO USE APP INVENTOR’S AIMERGER FOR DEVELOPMENT AS A TEAM
The AIMerger tool can be very useful when developing an app within a team. The tool
allows for multiple developers to work on different screens of the app and then merge
them together. This document outlines the process of using the AIMerger to develop an
app in a team environment. It will use the example of a simple two-screen app
developed by two different developers to demonstrate this process.

Overview
Dividing Work
Developer 1 Work In App Inventor

Design View
Blocks Editor
Download Source Code

Developer 2 Work In App Inventor
Design View
Blocks Editor
Download Source Code

Merging into one Project
Launch the AIMerger.
Find and Load Both Projects
Merge the Projects

Upload Final Project to App Inventor
Extras

Universal Databases and Assets
Assets
Databases

Merging More Than Two Projects
Appendix

Appendix A: Complete Blocks for Screen1 of CountDownScreen1
Appendix B: Complete Blocks for SetTime Screen

Overview
Each developer will work on their own separate project file. These project files can be
either under the same username or different usernames. There can only be one
“Screen1” per project and “Screen1” can not be renamed; therefore only the developer
designing the first screen to appear on the app should populate “Screen1.” All other
developers should leave “Screen1” blank and only develop additional screens.

One developer can write code to call a screen they are not developing but they must
know the name that has been assigned to that screen by its developer. Also, two
different developers/screens can use the same database or asset but they must be
named the same (for more details on this see the Universal Databases and Assets

 81

section below). Finally, no two different screens or assets can have the same name. For
these reasons it is important to decide beforehand the name of each screen and a
naming convention for assets that will insure no unwanted duplicates.

Once separate projects are complete they can be merged together using the AIMerger.

Dividing Work
Work should be divided by screens. Each screen should be assigned to a developer
and there should be only one version of each screen to be merged into the final app.
This document will follow an example for which there are two screens and two
developers working on an app named “CountDown.” The CountDown app will work like a
timer. The first screen shows the time counting down and allows the user to start, stop
or reset the timer. From the first screen the user can also switch to a second screen to
set the amount of time to count down.

Developer1 will work on the first screen and call it “Screen1”. Developer2 will work on
the second screen and call it “SetTime”. The naming convention for assets will be the
screen name followed by the asset name. There are no universal assets or databases.
Screen1 will open the SetTime screen and when the SetTime screen is closed it will
pass a number, representing the total number of seconds to countdown, to Screen1.

Developer 1 Work In App Inventor
Developer1 will log into App Inventor using their account and create a new project called
“CountDownScreen1.”

Design view
The Design view for CountDownScreen1’s Screen1 is shown below in Figure 1. Note
that the project name, the screen name and assets follow the predetermined naming
convention.

 82

Figure 1: CountDownScreen1’s Screen1 Design view

Blocks Editor
Developer1 then creates the blocks needed for Screen1. These blocks included a block
to open the SetTime screen when the “Set Time” button is clicked and a block to handle
when the SetTime screen is closed. Views of the SetTime.Click block and the
Screen1.OtherScreenClosed block are shown in Figure 2 and 3 respectively. The
complete set of blocks for Screen1 are shown in Appendix A.

Figure 2: CountDownScreen1’s Screen1 SetTime.Click block

In the SetTime.Click block, Screen1 opens the SetTime screen. Note that the string
assigned to screenName must be exactly what was decided in advance as the name of
the second screen.

 83

Figure 3: CountDownScreen1’s Screen1 OtherScreenClosed block

The Screen1.OtherScreenClosed receives the number of seconds to countdown from
the SetTime screen when the screen is closed and sets the startTimeInSeconds variable
to it.

Download Source Code
Once Developer1 completes Screen1 they download the source code. This is done by
going to the My Projects view and checking the checkbox next to the
CountDownScreen1 project. Then clicking on the “More Actions” dropdown and
selecting “Download Source”. In Figure 4 red arrows show how to select a project and
where to click to download the project’s source.

Figure 4: Steps to download CountDownScreen1 source

Developer 2 Work In App Inventor

 84

Developer2 will log into App Inventor using their account and create a new project called
“CountDownSetTime.”

Design view
The Design view for CountDownSetTime’s Screen1 is shown below in Figure 5. The
Screen1 is empty except for a button that takes you to the SetTime screen. This button
is only for Developer2 to get to the SetTime screen during testing and debuging. This
Screen1 will not be merged into the final app.

Figure 5: CountDownSetTime’s Screen1 Design view

The Design view for CountDownSetTime’s SetTime screen is shown below in Figure 6.
Note that the project name, the screen name and assets follow the predetermined
naming convention.

 85

Figure 6: CountDownSetTime’s SetTime screen Design view

Blocks Editor
Developer2 then creates the blocks needed for the SetTime screen. These blocks
include a block to send the number of seconds to countdown to Screen1 when the
SetTime screen is closed. This block is the ButtonDone.Click block shown in Figure 7. A
complete set of blocks for the SetTime screen are shown in Appendix B.

Figure 7: ButtonDone.Click block for CountDownSetTime’s SetTime screen

 86

Download Source Code
Developer2 downloads the source for CountDownSetTime following the same steps
Developer1 followed to download the source for CountDownScreen1.

Merging into one Project
Once both developers have downloaded the source code for their respective projects,
the two projects can be merged into the final app using the following steps.

Launch the AIMerger.
The main project will be CountDownScreen1 since Screen1 from this project will be the
Screen1 for the final app and the second project will be CountDownSetTime.

Find and Load Both Projects
Select the browse button for the main project.

A file browser window will appear. Find and select the CountDownScreen1.zip file, then
click Open.

The path for the project file will appear in the main project text box. Click the main
project’s Load button to load the project into the AIMerger.

 87

A list of the main project’s assets and screens will appear in the lower left hand corner of
the screen and this means that the main project has been loaded into the AIMerger.

Click the browse button for the second project.

A file browser window will appear. Find and select the CountDownSetTime.zip file, then
click Open. The path for the project file will appear in the second project text box. Click
the second project’s Load button to load the project into the AIMerger.

 88

A list of the second project’s assets and screens will appear in the lower right hand
corner of the screen and this means that the second project has been loaded into the
AIMerger.

Merge the Projects
Once two projects have been loaded a Merge button will appear between them.

Check the boxes next to all of the screens and assets you wish to merge into the final
app.

In this case only one screen is being selected from each project but in other cases
multiple screens can be merged from the same project file. For this example all assets

 89

and screens are selected except Screen1 from the second project. Screen1 from the
second project is grayed out since Screen1 from the main project is required and two
screens with the same name can be merged.

Click Merge.

A save dialog window will appear. Browse to where you would like to save the project,
enter the project’s name and then click Save. The project will be saved as a zip file.
In this example the project’s name will be CountDown and the file CountDown.zip will be
saved on the desktop since that is the directory selected (although this file can be saved
in any directory).

A dialog box will appear letting you know that your projects have been successfully
merged. There will now be a zip file on the desktop named CountDown.zip. The dialog
box will also ask if you would like to merge another project. Since this example only has
two developers working on two different project files, there is no need to merge another
project. Click No and confirm that you want to close the merger. For more information

 90

about merging more than two project see the Merging More Than Two Projects section
below.

Upload Final Project to App Inventor
The zip file created by the AIMerger is your new project file. This project file can be
uploaded to App Inventor so that you have a complete project in App Inventor.

To upload the file, launch App Inventor and go to the My Projects page. Click on the
More Actions dropdown and select Upload Source.

The following dialog box will appear. Select Choose File. A file browsing window will
appear. Find and select the zip file that was just created by the AIMerger. For this
example select the CountDown.zip file located on the desktop and then click Open
followed by OK.

Your new project now appears in your list of projects and opens in the App Inventor
window.

Extras

Universal Databases and Assets

 91

Assets
If your app uses the same asset on multiple screens, then you can make that asset
universal. This is done by giving it a name that does not follow the normal naming
convention but instead is repeated by all screens. When the projects are merged the
universal asset will only need to be selected from one of the projects.

For example, imagine you have a logo, which is an image, that should appear at the top
of every screen. Instead of having every developer name the logo something different
(Screen1Logo, Screen2Logo …), as the naming convention would require, every
developer can simply name it Logo. When the projects are merged only check the Logo
asset listed under the main project so that the asset is only loaded into the final app
once but all the screens will be able to access it.

Databases
Apps that use databases can be merged using the AIMerger very easily. Different
developers can even work on different screens, that use the same database, separately
and then merge them together at the end.

The only requirement for merging screens that share a database is that the name
assigned to the database for each screen is the same. Once the projects are merged
the same database will work for all the screens.

Merging More Than Two Projects
The AIMerger is still a very useful tool even if there are more than two developers
working on more than two project files. The process is exactly the same as the two
developer process, described above, until the dialog box letting you know your project
has been successfully merged pops up (shown below).

When there were only two developers we selected no but for the case of more than two
developers select Yes since there are more projects to be merged. A new dialog box
will appear asking if you would like to use the project you just created as the new main
project.

 92

If you select No, the AIMerger will restart with no projects loaded, the same as if you just
launched it. This would be used to merge two new projects together.

If you select Yes, the AIMerger will restart with the project you just created loaded as the
main project and the second project is blank (as shown in the picture below). This
option can be used if you would like to merge a third project with the first two projects
you previously merged.

 93

Appendix

Appendix A: Complete Blocks for Screen1 of
CountDownScreen1

 94

Appendix B: Complete Blocks for SetTime Screen

 95

REFERENCES

Harmon, Trevor. Displaying a List of Checkboxes. 10 Febuary 1999. March 2012
<www.devx.com/tips/Tip/5342>.

Hasan, Sakibul. Install Apache Ant on Mac OS X; Sakibul Hasan. 30 July 2010. 24
January 2012 <http://sakibulhasan.wordpress.com/2010/07/30/install-apache-ant-on-
mac-os-x/>.

Iridescent. Iridescent Learning. July 2012
<http://iridescentlearning.org/programs/technovation-challenge/>.

King, Rachael. Students Build Mobile Apps in Class - Businessweek. 6 February 2012.
September 2012 <http://www.businessweek.com/videos/2012-02-06/students-build-
mobile-apps-in-class>.

MIT Center for Mobile Learning. UNED, CSEV, Telefónica, Banco Santander and MIT
Create the First Ibero-American Community for Digital Entrepreneurship. 8 June 2012.
August 2012 <http://appinventor.mit.edu/explore/news/uned-csev-telef%C3%B3nica-
banco-santander-and-mit-create-first-ibero-american-community-digital.html>.

Trail: Graphical User Interfaces (The Java™ Tutorials). 1 September 2012. March 2012
<http://docs.oracle.com/javase/tutorial/ui/index.html>.

