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Introduction 
The Technovation Challenge is the largest technological entrepreneurship program for young 
women in the world. The program is run by Iridescent, who has already collected evidence 
that the challenge increases the rate of majoring in computer science by the girls in their 
program. This is especially important, and women are consistently underrepresented in 
computing careers.  
 
Technovation requires a mobile app prototype, and around 80% of apps submitted this year 
were built with MIT App Inventor. In this analysis, a team from MIT App Inventor took a closer 
look at half of those projects. The MIT team broke down the projects into a number of 
features and metrics, provided interpretation for the data patterns that were found, and 
provided abstracted data representing these features so that Iridescent may conduct further 
inquiry.  
 
This analysis was conducted under an agreement between Iridescent and MIT App Inventor. 
The mechanism of data collection, extraction, and analysis follows in the methodology.  
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Objectives 
● Investigate the content of submitted Technovation projects for signs of computational 

thinking and programmatic complexity.  
● Generate extracted data tables for future analysis with spreadsheet tools. 
● Provide discussion on observations of the data, and provide hypotheses where 

possible. 

Methodology 
Data Extraction and Cleaning 
Iridescent provided a list of project names and corresponding user names to analyze. These 
projects were made using the MIT App Inventor service, so their data was directly accessible 
given this information. This initial list of project names was assembled by self-report of the 
Technovation participants, and did not completely match with platform data. 
 
The data was obtained through a two-part process. The first part was extraction from the MIT 
App Inventor systems. These systems were constrained in what queries they allowed, so a 
protocol was designed to maximize the match rate against the list from Iridescent. In this 
protocol, first the usernames were matched, and then every project from those accounts were 
extracted. That set of projects was then “cleaned,” which reduced the set to the 
Technovation-related projects. Cleaning was done offline, where the matching processes 
were more flexible. 
 
Extraction from the MIT App Inventor systems was done by user names. The list provided by 
Iridescent contained 1491 unique user account names. Of those user names, 1355 matched 
accounts found in the App Inventor systems, using case-insensitive matching. If there were 
spelling or punctuation variations in the list from the actual account name, this process did 
not detect those accounts- this was the core limitation of the extraction system. All projects 
belonging to those users were extracted. This resulted in extraction of 9888 projects, with the 
understanding that only a fraction of those were the target Technovation projects. This 
method was chosen to allow for sophisticated project-name matching to be used in the data 
cleaning phase, which facilitated a higher match rate with the original project list. 
 
Cleaning used a more generous matching algorithm than extraction. Project names were 
“fuzzy matched” between the list provided by Iridescent and the project names found in the 
data set. The fuzziness allowed us to match names that had misspellings, varied in spacing 
or punctuation, or contained other small discrepancies.  
 
The fuzzy matching protocol looked at all projects from a given user, and tried to find the 
closest match to the name in the original list from Iridescent. If exactly one project was the 
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closest match, it was selected. If there were multiple projects that matched at the same 
degree, the entire project was discarded from the data set, as we could not be sure which 
was the “final” version. Only 60 projects were removed this way. If there were no close 
matches, the project was discarded from the data set, which removed 236 additional projects. 
 
At this point, we had identified all of the projects with valid extracted data. Of these extracted 
projects, 18 were corrupt, and were subsequently discarded. We corrected one duplicate 
project, and removed one corrupt project. This completed the data cleaning procedure. 
 
The number of projects on the initial list from Iridescent was 1525.  
We extracted 9888 projects from MIT App Inventor, matching 1355 distinct users.  
The total number of clean projects that were analyzed was 1066.  
 

Data Processing 
Processing was conducted on the 1066 projects from the cleaning step, bringing those 
projects into the analysis system, and performing feature extractions, supplying the abstract 
form on which to execute analysis. 
 
Each project was assigned a persistent code name, in the form “Project0000,” so that 
projects from disparate analysis operations may always be aligned.  
 
Each project was abstracted into a data structure that allowed for interactive interrogation of 
its screens, components, blocks, and other properties. These structures were processed in 
aggregate to create the feature sets discussed below.  
 

Analysis 
Descriptive Statistics 
Total number of projects analyzed: 1066 

Blocks Count per Project 

Min: 0 
Max: 10,464 
Mean: 451 
Median: 250 
Q1: 112 Q2 (median): 250  Q3: 544 
Modes (6 occurrences each): 21, 49, 60, 72, 75, 138 
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Min Max Median Mean 

0 10,464 250 451 

 Q1: 112 Q2: 250 Q3: 544 
 
 
There were 3 projects that contained zero blocks. There were 110 projects with more than 
1000 blocks. There were 29 projects that had 2,000 blocks or more. This, with consideration 
of the quartiles, indicates the distribution is strongly right-tailed, where the majority of projects 
100-500 blocks, which is a reasonable number for App Inventor, and reflects the Q1-Q3 
interquartile range of these data. A small minority of extremely high-block count projects 
pushed the average higher (<3% of projects with more than 2000 blocks, <10% of projects 
with more than 1000 blocks). The mode in this instance is a weak measure of central 
tendency, as there are 6 equal modes, with each only appearing 6 times. Five of those 
modes occur in the first quartile. 

 

Screens Count per Project 

Min: 1 
Max: 109  
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Mean: 8.75 
Median: 8 
Mode: 8 
 

Min Max Median Mean 

1 109 8 8.75 
 
 
We found 60 projects with 20 or more screens. The highest screen count was 109, in 
Project0068. There appears to be a bimodal nature to the screen count distribution. The vast 
majority of projects fit onto a normal curve in a low-count range, with a much smaller group of 
projects with a large number. We hypothesize the latter group is using screens like pages of 
a book, where each page is informational, and changing “pages” by changing screens, rather 
than updating the information displayed on a single screen. This is a well-documented naive 
strategy seen in App Inventor projects.  This strategy often creates issues, as the App 
Inventor editor, and the Android system below it, tend to experience performance degradation 
with a large number of screens. Best practice in App Inventor teacher training and curricula 
from is using a single screen for informational features of this type and updating the 
information on the screen; which gives the app speed and responsiveness, gives the 
programmer more flexibility, and gives the user a better experience. But that design comes at 
a cost of added complexity in blocks programming, where the abstraction over pages is done 
using lists and “set text” and/or “set image” blocks. In the apps where screens are used as 
static pages, the blocks typically only change to other pages, allowing the developer to avoid 
learning more advanced programming techniques. To check this assertion, we developed the 
measure that is the percentage of blocks in a project that open other screens. With that 
measure, a value of 33% would indicate there are three blocks, with one of them being “open 
another screen” or “open another screen with value.” A value of 0% would indicate that 
another screen is never opened by the blocks. This measure had a strong relationship to 
number of screens, where the higher the number of screens, the higher the percentage of 
screen-opening blocks. This relationship suggests that the high-screen apps are indeed 
storybook type. An interesting future investigation might include better detection of “story 
book” apps with a small number of screens, which may allow teachers or mentors to 
intervene while the app design is still correctable.  
 

Iridescent Rubric 
Iridescent has provided the following rubric as a basis for feature extraction and assessment.  

Measure 1: App Complexity Categories 

Iridescent provided four “levels” of programmatic complexity: 
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Category Contents 

Level 1: Simple Control Blocks “When” blocks, opening another screen 

Level 2: Complex Control Blocks “For” loops, “foreach,” “while” loops, 
conditionals 

Level 3: Local Databases or 
Variables 

TinyDB, local variables, global variables 

Level 4: External Data TinyWebDB, Fusion Tables, Firebase, 
CloudDB, Yandex Translate, other blocks 
associated with APIs 

 

Measure 2: Sensors and Mobile Functionality 

This measure explores the presence of components listed below, and the blocks 
corresponding to those components.  
 
Accelerometer, Barcode Scanner, Camera, Location Sensor, Activity Starter, 
Pedometer, Orientation Sensor, Near Field, Proximity Sensor, Location Sensor, 
Gyroscope, Camcorder, Image Picker, Text To Speech, Sound Recorder, Speech 
Recognizer, Contact Picker, Email Picker, Phone Call, Phone Number Picker, 
Sharing, Twitter, Bluetooth, and Texting 

 
We further divided this list into two- sensor components and phone functionality components. 
They were split as such: 
 

Sensor Components Phone Functionality Components 

AccelerometerSensor 
BarcodeScanner 
GyroscopeSensor 
LocationSensor 
NearField 
OrientationSensor 
Pedometer 
ProximitySensor 

ImagePicker 
ContactPicker 
EmailPicker 
PhoneNumberPicker 
Camcorder 
Camera 
TextToSpeech 
SoundRecorder 
SpeechRecognizer 
PhoneCall 
Sharing 
Twitter 
Texting 
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BluetoothClient 
BluetoothServer 
ActivityStarter 

 

Assessing Rubric Measure 1 - Block Sophistication 
Level Achievement by Blocks 

The table below describes how many projects had at least one block in the given level. 
 
 Level 1 Level 2 Level 3 Level 4 
Count 1063 879 607 372 

% 99.7 82.5 57.0 34.9 

 
 

Level Depth by Blocks 

These tables describe the number of blocks found in each project that correspond to a given 
level. These are summative statistics for each level, to express range and central tendencies. 
A higher number indicates that projects, in aggregate, utilized more blocks of that given level.  
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Level 1: Simple Control Blocks 

Min Max Median Mean 

0 713 42 55.73 
 

Level 2: Complex Control Blocks 

Min Max Median Mean 

0 567 6 15.45 
 

Level 3: Local Databases or Variables 

Min Max Median Mean 

0 338 5 16.88 
 

Level 4: External Data 

Min Max Median Mean 

0 463 0 5.82 
 

Monotonicity of Levels 

The levels provided in the Iridescent rubric were not always monotonic. Some projects 
demonstrated a certain level without passing through the previous level. 
 
Number of monotonic projects: 868 
Number of non-monotonic projects: 198 

Breakdown of Non-monotonic Projects 

 

Skipped complexity levels L2 Complex Control 
Blocks 

L3 Local DBs and Variables 

Counts of skipped levels 52 155 
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Measure 2 - Sensors and Mobile Features 
Designated feature components are listed in the table below, in descending order of 
popularity within the data set. Interestingly, 316 projects used none of the below components. 
That group of projects is the second-largest in the below table.  
 

Component Count % Component Count % 

ActivityStarter 322 30.21% SpeechRecognizer 19 1.78% 

LocationSensor 215 20.17% BarcodeScanner 19 1.78% 

PhoneCall 168 15.76% Pedometer 17 1.58% 

Camera 164 15.38 Camcorder 15 1.41% 

ImagePicker 138 12.95% SoundRecorder 14 1.31% 

Texting 133 12.48% OrientationSensor 13 1.22% 

Sharing 101 9.47% Twitter 10 0.94% 

TextToSpeech 91 8.54% BluetoothClient 9 0.84% 

Accelerometer 48 4.50% NearField (NFC) 6 0.56% 

PhoneNumberPicker 43 4.03% ProximitySensor 3 0.28% 

EmailPicker 40 3.75% BluetoothServer 2 0.19% 

ContactPicker 25 2.35% GyroscopeSensor 1 0.09% 

   None of the Above 316 29.64% 
 

Interesting Observations 
Number of Screens per Project 
The number of screens in a project can indicate what that project may contain. In particular, a 
less advanced app design is a “story book,” where each page is implemented as a separate 
screen, and each screen does nothing beyond display static information and move on to the 
next screen. The “best practice” for this kind of informational app is to not have repeated 
screens, but rather to use a single screen where the format is static, and manipulate the text 
and/or images on that single screen to “turn the pages.” This is more computationally efficient 
for the device and allows easier modification and extension of the app, but a higher degree of 
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abstraction is necessary. The content must be abstracted from the page itself, and this 
makes for more complicated code. The multiple-page story book app is tractable when the 
number of pages is small, which often deceives the programmer into thinking that there is no 
cost per screen. Many Android and App Inventor apps will not successfully build if they have 
an excessive number of screens. The exact number varies, but MIT has added a warning to 
App Inventor when the user creates their tenth screen, as projects at that size and beyond 
become less likely to work.  
 
In this data set, the screen count distribution was aggressively right-tailed. The interesting 
observation here is that the central tendency is around eight screens. Few projects were 
single-screen, and even fewer were two-screened, as seen in the histogram below. Most 
Technovation projects used three screens or more. The troubling observation is the long 
right-tail, which is truncated in the below histogram into a 20+ bin. There is a sharp fall-off 
beginning after 10 screens, but there are a similar number of projects containing 10 or more 
screens than there are two or fewer.  

 

Unused Screens 
All projects have a number of screens, and a total number of blocks. But looking at these 
numbers alone may create a misleading image of the nature of the project. If a project has 
extra screens that are unused or underused, the average number of blocks per screen overall 
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will drop, and that may create a misinterpretation that the project has a number of low-
complexity screens, while it is possible that it has one complex screen and multiple unused 
screens.  
 
To assess this, we studied the median value of blocks/screen. We hypothesized that a 
project that has multiple screens, non-trivial block count, but a low median value (or a median 
of 0) is likely to have extra screens that are not being used. If it has extra/unused screens, 
the average blocks per screen value will be driven lower than is accurate for the screens 
being used. This is difficult to interpret with average of blocks/screen alone. To test this 
hypothesis, we analyzed all the projects with a median blocks/screen value of 0, and they all 
had some number of screens with zero blocks. This data can be found in T6. 
 
As an example, Project 260 had 7 screens, 21 blocks total, which gave it an average 
blocks/screen of 3. But the median value of blocks/screen was 0, and indicated that there 
were unused screens. We inspected this project manually, and found four of the seven 
screens had zero blocks. If we only count the screens that had blocks, the average 
blocks/screen was 7, which indicates a more complex project. But in reality, one screen had 
over half of the blocks- we found one complex screen, two low-complexity screens, and three 
empty screens. Based on inspection of this data set, this pattern is a reasonable 
interpretation whenever the blocks/screen median value is zero. 
 
The table below summarizes the block counts for each of the screens of Project 260. 
Additionally, the screens’ names used the auto-generated numbering scheme, but with many 
numbers missing. This may indicate that the student created many screens, deleted some, 
and didn’t delete others. We cannot hypothesize why this may have happened without further 
data. 
 

Screen Number of blocks  Screen Number of blocks 

Screen1 3  Screen10 0 

Screen2 12  Screen11 0 

Screen6 6  Screen14 0 

Screen9 0    
 

Relationship of External Data Sources to Block Count 
A question was posed, do projects that involve external work or external data sources use 
fewer blocks than other projects? Iridescent hypothesized they would use fewer blocks, and 
we hypothesized they would not use fewer blocks. We first reworded the question to “do 
projects that represent Rubric Level 4 use more blocks than projects that do not represent 
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Level 4?”, as Rubric Level 4 indicates use of external sources and/or utilization of external 
work. 
 
To investigate, we isolated all the projects that had blocks pertaining to Level 4 (n=400), and 
all the projects that had no blocks from Level 4 (n’=666). We counted the blocks per project 
for all projects in those sets, and found the averages and medians of those values, shown in 
the table below. 
 

 Average Blocks/Project Median Blocks/Project 

Level 4 570 346 

Not Level 4 380 180 
 
We found that Level 4 projects had a higher average number of blocks and a higher median 
number of blocks, indicating that the entire curve was higher. We used a T-test to validate the 
statistical significance of the difference between these populations, and found the difference 
was statistically significant, though the t-value was low, indicating that the groups were 
somewhat similar (t=4.436, p<.001). This leads us to reject the hypothesis that an app 
leveraging external work would use fewer blocks, as there is strong evidence that the Level 4 
apps used significantly more blocks than those of the non-Level 4 projects. However, there is 
a threat to validity here, in that “Not Level 4” may include a large number of trivial or 
incomplete projects, which do not make a fair comparison against the likely-to-be-
sophisticated apps that inhabit Level 4. This threat to validity would also help explain the 
suspiciously small p-value from the T-test.  

Conclusion 
These analyses shed light on some unseen patterns in Technovation projects, which can 
inform curricular design. There is a high likelihood that many projects were “storybook” apps, 
that rely on number of screens and avoid more elegant, sophisticated programming 
techniques. The second-largest phone or sensor feature utilized was no features at all, which 
indicates there is room for curricular growth to encourage students to better utilize the App 
Inventor platform.  Additionally, we found patterns that may inform future tools to detect 
known bad practices and request mentor intervention, such as a high ratio of “open another 
screen” blocks relative to overall blocks. Many other subtle insights may seed future work, 
both in academic research at MIT and other institutions, and in direct pedagogical feedback 
for Iridescent. 
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Data Tables 
T0-Identity-Table 

This file contains identifiable information linking the code names of the data set to real-world 
identities. This file contains identifiable information and must be protected. It contains 
the email address, the project name as given by the team (tagged “project”), the project name 
as matched to the database (tagged “valid project”), the code name given to the project, and 
the App Inventor internal project ID number. This file is the real-world identity key to the 
other files.  

T1-Rubric-Level-Depth-BlocksOnly 

This file counts how many blocks of a given complexity level were found in each project. 
Each project is a separate row, and each column depicts the complexity level from the rubric, 
with one addition- Level 3, which is broken out as separate categories. L3-tdb counts TinyDB, 
L3-var counts local and global variables, and L3 combines them both.  

T2-Rubric-Level-Achievement-ComponentsOnly 

This file indicates which projects have at least one component of the given complexity level. 
This count does not include blocks. In short, “True” indicates that a project did achieve the 
given level, at least trivially, by having a component present. However, a component’s 
presence may not be enough to claim that it is utilized. For utilization, see T3, below.  

T3-Rubric-Level-Achievement-BlocksAndComponents 

This file is similar to T2, above, but looks at the use of both components and blocks. A value 
of “True” indicates that components of the given level were found, as well as  blocks that 
exercise those components. This is subtly different than the above table, and provides a 
stronger indication of whether the user has mastery of the level. 

T4-FeatureCounts 

This file counts the presence of feature categories for each project. There are two groups of 
features- Sensors and Phone Functionality, as described above. This file counts the 
components and blocks found for each, for each project. The columns are Sensor 
Components, Sensor Blocks, Phone Function Components, Phone Function Blocks.  

T5-All-Feature-Grid 

This file contains a grid of identified phone functionality and sensor features, indicating 
whether a particular project uses those elements.  

T6-Screen-Block-Stats 

This file counts the total number of screens and blocks for each project. It also provides the 
mean of blocks per screen, and the median of blocks per screen. Both of these statistics are 
included to provide insight into how many screens are being used. A project that has multiple 
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screens, non-trivial block count, and a low median value (or a median of 0) likely has 
extra/unused screens. If it does, the average blocks per screen value is driven lower than is 
strictly accurate for the screens being used.  

T6-Level1, T6-Level2, T6-Level3, T6-Level4 

These files contain the same information as T6-Screen-Block-Stats, but broken up by rubric 
level blocks. File T6-Leveln contains all of the projects that had at least one block for rubric 
level n. A project may appear in multiple of these files, if it represented multiple levels.  
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