

1

AUGUST 17

MIT APP INVENTOR
Authored by Mark Sherman, Ph.D.
Assisted by Obada M. Alkhatib

Technovation
2018

MIT Analysis of the 2018 Technovation student
projects, sponsored by Salesforce

2

Technovation Computational Thinking 2018
Authored by Mark Sherman, Ph.D.
Assisted by Obada M. Alkhatib
Inquiries may be directed to Josh Sheldon (jsheldon@mit.edu)

Introduction 3

Objectives 4

Methodology 4

Data Extraction and Cleaning 4

Data Processing 5

Analysis 5

Descriptive Statistics 5

Blocks Count per Project 5

Screens Count per Project 6

Iridescent Rubric 7

Measure 1: App Complexity Categories 7

Measure 2: Sensors and Mobile Functionality 8

Assessing Rubric Measure 1 - Block Sophistication 9

Level Achievement by Blocks 9

Level Depth by Blocks 9

Level 1: Simple Control Blocks 10

Level 2: Complex Control Blocks 10

Level 3: Local Databases or Variables 10

Level 4: External Data 10

Monotonicity of Levels 10

Breakdown of Non-monotonic Projects 10

Measure 2 - Sensors and Mobile Features 11

Interesting Observations 11

Number of Screens per Project 11

Unused Screens 12

Relationship of External Data Sources to Block Count 13

MIT ANALYSIS OF THE 2018 TECHNOVATION STUDENT PROJECTS
SPONSORED BY SALESFORCE

3

Conclusion 14

Data Tables 15

T0-Identity-Table 15

T1-Rubric-Level-Depth-BlocksOnly 15

T2-Rubric-Level-Achievement-ComponentsOnly 15

T3-Rubric-Level-Achievement-BlocksAndComponents 15

T4-FeatureCounts 15

T5-All-Feature-Grid 15

T6-Screen-Block-Stats 15

T6-Level1, T6-Level2, T6-Level3, T6-Level4 16

Contributors 16

Cover image of the MIT Stata Center © 2014 Robin Stevens, used under Creative Commons 2.0

Introduction
The Technovation Challenge is the largest technological entrepreneurship program for young
women in the world. The program is run by Iridescent, who has already collected evidence
that the challenge increases the rate of majoring in computer science by the girls in their
program. This is especially important, and women are consistently underrepresented in
computing careers.

Technovation requires a mobile app prototype, and around 80% of apps submitted this year
were built with MIT App Inventor. In this analysis, a team from MIT App Inventor took a closer
look at half of those projects. The MIT team broke down the projects into a number of
features and metrics, provided interpretation for the data patterns that were found, and
provided abstracted data representing these features so that Iridescent may conduct further
inquiry.

This analysis was conducted under an agreement between Iridescent and MIT App Inventor.
The mechanism of data collection, extraction, and analysis follows in the methodology.

4

Objectives
● Investigate the content of submitted Technovation projects for signs of computational

thinking and programmatic complexity.
● Generate extracted data tables for future analysis with spreadsheet tools.
● Provide discussion on observations of the data, and provide hypotheses where

possible.

Methodology
Data Extraction and Cleaning
Iridescent provided a list of project names and corresponding user names to analyze. These
projects were made using the MIT App Inventor service, so their data was directly accessible
given this information. This initial list of project names was assembled by self-report of the
Technovation participants, and did not completely match with platform data.

The data was obtained through a two-part process. The first part was extraction from the MIT
App Inventor systems. These systems were constrained in what queries they allowed, so a
protocol was designed to maximize the match rate against the list from Iridescent. In this
protocol, first the usernames were matched, and then every project from those accounts were
extracted. That set of projects was then “cleaned,” which reduced the set to the
Technovation-related projects. Cleaning was done offline, where the matching processes
were more flexible.

Extraction from the MIT App Inventor systems was done by user names. The list provided by
Iridescent contained 1491 unique user account names. Of those user names, 1355 matched
accounts found in the App Inventor systems, using case-insensitive matching. If there were
spelling or punctuation variations in the list from the actual account name, this process did
not detect those accounts- this was the core limitation of the extraction system. All projects
belonging to those users were extracted. This resulted in extraction of 9888 projects, with the
understanding that only a fraction of those were the target Technovation projects. This
method was chosen to allow for sophisticated project-name matching to be used in the data
cleaning phase, which facilitated a higher match rate with the original project list.

Cleaning used a more generous matching algorithm than extraction. Project names were
“fuzzy matched” between the list provided by Iridescent and the project names found in the
data set. The fuzziness allowed us to match names that had misspellings, varied in spacing
or punctuation, or contained other small discrepancies.

The fuzzy matching protocol looked at all projects from a given user, and tried to find the
closest match to the name in the original list from Iridescent. If exactly one project was the

5

closest match, it was selected. If there were multiple projects that matched at the same
degree, the entire project was discarded from the data set, as we could not be sure which
was the “final” version. Only 60 projects were removed this way. If there were no close
matches, the project was discarded from the data set, which removed 236 additional projects.

At this point, we had identified all of the projects with valid extracted data. Of these extracted
projects, 18 were corrupt, and were subsequently discarded. We corrected one duplicate
project, and removed one corrupt project. This completed the data cleaning procedure.

The number of projects on the initial list from Iridescent was 1525.
We extracted 9888 projects from MIT App Inventor, matching 1355 distinct users.
The total number of clean projects that were analyzed was 1066.

Data Processing
Processing was conducted on the 1066 projects from the cleaning step, bringing those
projects into the analysis system, and performing feature extractions, supplying the abstract
form on which to execute analysis.

Each project was assigned a persistent code name, in the form “Project0000,” so that
projects from disparate analysis operations may always be aligned.

Each project was abstracted into a data structure that allowed for interactive interrogation of
its screens, components, blocks, and other properties. These structures were processed in
aggregate to create the feature sets discussed below.

Analysis
Descriptive Statistics
Total number of projects analyzed: 1066

Blocks Count per Project

Min: 0
Max: 10,464
Mean: 451
Median: 250
Q1: 112 Q2 (median): 250 Q3: 544
Modes (6 occurrences each): 21, 49, 60, 72, 75, 138

6

Min Max Median Mean

0 10,464 250 451

 Q1: 112 Q2: 250 Q3: 544

There were 3 projects that contained zero blocks. There were 110 projects with more than
1000 blocks. There were 29 projects that had 2,000 blocks or more. This, with consideration
of the quartiles, indicates the distribution is strongly right-tailed, where the majority of projects
100-500 blocks, which is a reasonable number for App Inventor, and reflects the Q1-Q3
interquartile range of these data. A small minority of extremely high-block count projects
pushed the average higher (<3% of projects with more than 2000 blocks, <10% of projects
with more than 1000 blocks). The mode in this instance is a weak measure of central
tendency, as there are 6 equal modes, with each only appearing 6 times. Five of those
modes occur in the first quartile.

Screens Count per Project

Min: 1
Max: 109

7

Mean: 8.75
Median: 8
Mode: 8

Min Max Median Mean

1 109 8 8.75

We found 60 projects with 20 or more screens. The highest screen count was 109, in
Project0068. There appears to be a bimodal nature to the screen count distribution. The vast
majority of projects fit onto a normal curve in a low-count range, with a much smaller group of
projects with a large number. We hypothesize the latter group is using screens like pages of
a book, where each page is informational, and changing “pages” by changing screens, rather
than updating the information displayed on a single screen. This is a well-documented naive
strategy seen in App Inventor projects. This strategy often creates issues, as the App
Inventor editor, and the Android system below it, tend to experience performance degradation
with a large number of screens. Best practice in App Inventor teacher training and curricula
from is using a single screen for informational features of this type and updating the
information on the screen; which gives the app speed and responsiveness, gives the
programmer more flexibility, and gives the user a better experience. But that design comes at
a cost of added complexity in blocks programming, where the abstraction over pages is done
using lists and “set text” and/or “set image” blocks. In the apps where screens are used as
static pages, the blocks typically only change to other pages, allowing the developer to avoid
learning more advanced programming techniques. To check this assertion, we developed the
measure that is the percentage of blocks in a project that open other screens. With that
measure, a value of 33% would indicate there are three blocks, with one of them being “open
another screen” or “open another screen with value.” A value of 0% would indicate that
another screen is never opened by the blocks. This measure had a strong relationship to
number of screens, where the higher the number of screens, the higher the percentage of
screen-opening blocks. This relationship suggests that the high-screen apps are indeed
storybook type. An interesting future investigation might include better detection of “story
book” apps with a small number of screens, which may allow teachers or mentors to
intervene while the app design is still correctable.

Iridescent Rubric
Iridescent has provided the following rubric as a basis for feature extraction and assessment.

Measure 1: App Complexity Categories

Iridescent provided four “levels” of programmatic complexity:

8

Category Contents

Level 1: Simple Control Blocks “When” blocks, opening another screen

Level 2: Complex Control Blocks “For” loops, “foreach,” “while” loops,
conditionals

Level 3: Local Databases or
Variables

TinyDB, local variables, global variables

Level 4: External Data TinyWebDB, Fusion Tables, Firebase,
CloudDB, Yandex Translate, other blocks
associated with APIs

Measure 2: Sensors and Mobile Functionality

This measure explores the presence of components listed below, and the blocks
corresponding to those components.

Accelerometer, Barcode Scanner, Camera, Location Sensor, Activity Starter,
Pedometer, Orientation Sensor, Near Field, Proximity Sensor, Location Sensor,
Gyroscope, Camcorder, Image Picker, Text To Speech, Sound Recorder, Speech
Recognizer, Contact Picker, Email Picker, Phone Call, Phone Number Picker,
Sharing, Twitter, Bluetooth, and Texting

We further divided this list into two- sensor components and phone functionality components.
They were split as such:

Sensor Components Phone Functionality Components

AccelerometerSensor
BarcodeScanner
GyroscopeSensor
LocationSensor
NearField
OrientationSensor
Pedometer
ProximitySensor

ImagePicker
ContactPicker
EmailPicker
PhoneNumberPicker
Camcorder
Camera
TextToSpeech
SoundRecorder
SpeechRecognizer
PhoneCall
Sharing
Twitter
Texting

9

BluetoothClient
BluetoothServer
ActivityStarter

Assessing Rubric Measure 1 - Block Sophistication
Level Achievement by Blocks

The table below describes how many projects had at least one block in the given level.

 Level 1 Level 2 Level 3 Level 4
Count 1063 879 607 372

% 99.7 82.5 57.0 34.9

Level Depth by Blocks

These tables describe the number of blocks found in each project that correspond to a given
level. These are summative statistics for each level, to express range and central tendencies.
A higher number indicates that projects, in aggregate, utilized more blocks of that given level.

10

Level 1: Simple Control Blocks

Min Max Median Mean

0 713 42 55.73

Level 2: Complex Control Blocks

Min Max Median Mean

0 567 6 15.45

Level 3: Local Databases or Variables

Min Max Median Mean

0 338 5 16.88

Level 4: External Data

Min Max Median Mean

0 463 0 5.82

Monotonicity of Levels

The levels provided in the Iridescent rubric were not always monotonic. Some projects
demonstrated a certain level without passing through the previous level.

Number of monotonic projects: 868
Number of non-monotonic projects: 198

Breakdown of Non-monotonic Projects

Skipped complexity levels L2 Complex Control
Blocks

L3 Local DBs and Variables

Counts of skipped levels 52 155

11

Measure 2 - Sensors and Mobile Features
Designated feature components are listed in the table below, in descending order of
popularity within the data set. Interestingly, 316 projects used none of the below components.
That group of projects is the second-largest in the below table.

Component Count % Component Count %

ActivityStarter 322 30.21% SpeechRecognizer 19 1.78%

LocationSensor 215 20.17% BarcodeScanner 19 1.78%

PhoneCall 168 15.76% Pedometer 17 1.58%

Camera 164 15.38 Camcorder 15 1.41%

ImagePicker 138 12.95% SoundRecorder 14 1.31%

Texting 133 12.48% OrientationSensor 13 1.22%

Sharing 101 9.47% Twitter 10 0.94%

TextToSpeech 91 8.54% BluetoothClient 9 0.84%

Accelerometer 48 4.50% NearField (NFC) 6 0.56%

PhoneNumberPicker 43 4.03% ProximitySensor 3 0.28%

EmailPicker 40 3.75% BluetoothServer 2 0.19%

ContactPicker 25 2.35% GyroscopeSensor 1 0.09%

 None of the Above 316 29.64%

Interesting Observations
Number of Screens per Project
The number of screens in a project can indicate what that project may contain. In particular, a
less advanced app design is a “story book,” where each page is implemented as a separate
screen, and each screen does nothing beyond display static information and move on to the
next screen. The “best practice” for this kind of informational app is to not have repeated
screens, but rather to use a single screen where the format is static, and manipulate the text
and/or images on that single screen to “turn the pages.” This is more computationally efficient
for the device and allows easier modification and extension of the app, but a higher degree of

12

abstraction is necessary. The content must be abstracted from the page itself, and this
makes for more complicated code. The multiple-page story book app is tractable when the
number of pages is small, which often deceives the programmer into thinking that there is no
cost per screen. Many Android and App Inventor apps will not successfully build if they have
an excessive number of screens. The exact number varies, but MIT has added a warning to
App Inventor when the user creates their tenth screen, as projects at that size and beyond
become less likely to work.

In this data set, the screen count distribution was aggressively right-tailed. The interesting
observation here is that the central tendency is around eight screens. Few projects were
single-screen, and even fewer were two-screened, as seen in the histogram below. Most
Technovation projects used three screens or more. The troubling observation is the long
right-tail, which is truncated in the below histogram into a 20+ bin. There is a sharp fall-off
beginning after 10 screens, but there are a similar number of projects containing 10 or more
screens than there are two or fewer.

Unused Screens
All projects have a number of screens, and a total number of blocks. But looking at these
numbers alone may create a misleading image of the nature of the project. If a project has
extra screens that are unused or underused, the average number of blocks per screen overall

13

will drop, and that may create a misinterpretation that the project has a number of low-
complexity screens, while it is possible that it has one complex screen and multiple unused
screens.

To assess this, we studied the median value of blocks/screen. We hypothesized that a
project that has multiple screens, non-trivial block count, but a low median value (or a median
of 0) is likely to have extra screens that are not being used. If it has extra/unused screens,
the average blocks per screen value will be driven lower than is accurate for the screens
being used. This is difficult to interpret with average of blocks/screen alone. To test this
hypothesis, we analyzed all the projects with a median blocks/screen value of 0, and they all
had some number of screens with zero blocks. This data can be found in T6.

As an example, Project 260 had 7 screens, 21 blocks total, which gave it an average
blocks/screen of 3. But the median value of blocks/screen was 0, and indicated that there
were unused screens. We inspected this project manually, and found four of the seven
screens had zero blocks. If we only count the screens that had blocks, the average
blocks/screen was 7, which indicates a more complex project. But in reality, one screen had
over half of the blocks- we found one complex screen, two low-complexity screens, and three
empty screens. Based on inspection of this data set, this pattern is a reasonable
interpretation whenever the blocks/screen median value is zero.

The table below summarizes the block counts for each of the screens of Project 260.
Additionally, the screens’ names used the auto-generated numbering scheme, but with many
numbers missing. This may indicate that the student created many screens, deleted some,
and didn’t delete others. We cannot hypothesize why this may have happened without further
data.

Screen Number of blocks Screen Number of blocks

Screen1 3 Screen10 0

Screen2 12 Screen11 0

Screen6 6 Screen14 0

Screen9 0

Relationship of External Data Sources to Block Count
A question was posed, do projects that involve external work or external data sources use
fewer blocks than other projects? Iridescent hypothesized they would use fewer blocks, and
we hypothesized they would not use fewer blocks. We first reworded the question to “do
projects that represent Rubric Level 4 use more blocks than projects that do not represent

14

Level 4?”, as Rubric Level 4 indicates use of external sources and/or utilization of external
work.

To investigate, we isolated all the projects that had blocks pertaining to Level 4 (n=400), and
all the projects that had no blocks from Level 4 (n’=666). We counted the blocks per project
for all projects in those sets, and found the averages and medians of those values, shown in
the table below.

 Average Blocks/Project Median Blocks/Project

Level 4 570 346

Not Level 4 380 180

We found that Level 4 projects had a higher average number of blocks and a higher median
number of blocks, indicating that the entire curve was higher. We used a T-test to validate the
statistical significance of the difference between these populations, and found the difference
was statistically significant, though the t-value was low, indicating that the groups were
somewhat similar (t=4.436, p<.001). This leads us to reject the hypothesis that an app
leveraging external work would use fewer blocks, as there is strong evidence that the Level 4
apps used significantly more blocks than those of the non-Level 4 projects. However, there is
a threat to validity here, in that “Not Level 4” may include a large number of trivial or
incomplete projects, which do not make a fair comparison against the likely-to-be-
sophisticated apps that inhabit Level 4. This threat to validity would also help explain the
suspiciously small p-value from the T-test.

Conclusion
These analyses shed light on some unseen patterns in Technovation projects, which can
inform curricular design. There is a high likelihood that many projects were “storybook” apps,
that rely on number of screens and avoid more elegant, sophisticated programming
techniques. The second-largest phone or sensor feature utilized was no features at all, which
indicates there is room for curricular growth to encourage students to better utilize the App
Inventor platform. Additionally, we found patterns that may inform future tools to detect
known bad practices and request mentor intervention, such as a high ratio of “open another
screen” blocks relative to overall blocks. Many other subtle insights may seed future work,
both in academic research at MIT and other institutions, and in direct pedagogical feedback
for Iridescent.

15

Data Tables
T0-Identity-Table

This file contains identifiable information linking the code names of the data set to real-world
identities. This file contains identifiable information and must be protected. It contains
the email address, the project name as given by the team (tagged “project”), the project name
as matched to the database (tagged “valid project”), the code name given to the project, and
the App Inventor internal project ID number. This file is the real-world identity key to the
other files.

T1-Rubric-Level-Depth-BlocksOnly

This file counts how many blocks of a given complexity level were found in each project.
Each project is a separate row, and each column depicts the complexity level from the rubric,
with one addition- Level 3, which is broken out as separate categories. L3-tdb counts TinyDB,
L3-var counts local and global variables, and L3 combines them both.

T2-Rubric-Level-Achievement-ComponentsOnly

This file indicates which projects have at least one component of the given complexity level.
This count does not include blocks. In short, “True” indicates that a project did achieve the
given level, at least trivially, by having a component present. However, a component’s
presence may not be enough to claim that it is utilized. For utilization, see T3, below.

T3-Rubric-Level-Achievement-BlocksAndComponents

This file is similar to T2, above, but looks at the use of both components and blocks. A value
of “True” indicates that components of the given level were found, as well as blocks that
exercise those components. This is subtly different than the above table, and provides a
stronger indication of whether the user has mastery of the level.

T4-FeatureCounts

This file counts the presence of feature categories for each project. There are two groups of
features- Sensors and Phone Functionality, as described above. This file counts the
components and blocks found for each, for each project. The columns are Sensor
Components, Sensor Blocks, Phone Function Components, Phone Function Blocks.

T5-All-Feature-Grid

This file contains a grid of identified phone functionality and sensor features, indicating
whether a particular project uses those elements.

T6-Screen-Block-Stats

This file counts the total number of screens and blocks for each project. It also provides the
mean of blocks per screen, and the median of blocks per screen. Both of these statistics are
included to provide insight into how many screens are being used. A project that has multiple

16

screens, non-trivial block count, and a low median value (or a median of 0) likely has
extra/unused screens. If it does, the average blocks per screen value is driven lower than is
strictly accurate for the screens being used.

T6-Level1, T6-Level2, T6-Level3, T6-Level4

These files contain the same information as T6-Screen-Block-Stats, but broken up by rubric
level blocks. File T6-Leveln contains all of the projects that had at least one block for rubric
level n. A project may appear in multiple of these files, if it represented multiple levels.

Contributors
Mark Sherman, Ph.D., author and analyst
Obada M. Alkhatib, analysis programming and reporting
Jeff Schiller, data extraction and preparation
Drew H. Nichols, copy editing
Josh Sheldon, program oversight, co-director MIT App Inventor
Mike Tissenbaum, Ph.D., research direction
Prof. Hal Abelson, director, MIT App Inventor

