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Abstract 
Recent education policies in the U.S. and globally have pushed for computer science and artificial 
intelligence (A.I.) instruction for young people in K-12 grade bands. At the same time, student 
outcomes in these initiatives have varied widely depending on implementation. At stake is whether 
such programs can motivate students not only to succeed in the classroom but to advance beyond 
introductory classes and develop satisfying professional pathways. The computational action 
framework, proposed by Tissenbaum, Sheldon, and Abelson in 2018, offers a way of scaffolding 
young people in creating technology projects that address real issues in their communities, rather than 
“just coding.” This paper presents the computational action process, a curriculum and set of tools 
based on the original framework, and the results of a human-subject research study on the 
computational action process with U.S. and international students aged 11 to 18. Analyses of pre-post 
surveys on the Likert scale show that after the intervention, students showed an increase in 
computation skill and identity, an increase in confidence in their ability to make a prosocial impact, and 
an increase in their confidence in solving ambiguous problems on their own. Students’ responses 
post-intervention demonstrated more impact-driven, community-oriented thinking. These promising 
results indicate that the computational action process can be a helpful addition to computer science 
and A.I. education programs to motivate student learners. 
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1 INTRODUCTION  
A recent global policy trend to establish formal computer science instruction in schools has resulted in 
successful student outcomes as well as stagnation, depending on the location, standards, and 
methodology [1, 2]. In the US, robust policies for K-12 computer science education are now in over 24 
states. However, gains in broader participation have been modest and varied by location and content. 
For example, growing participation among underrepresented groups in introductory computer science 
classes has not accompanied increased participation in elective coursework or interest in pursuing 
computer science careers. Outside the US, there is evidence that nations and school systems that 
began deepening their efforts into compulsory public computer science education have experienced 
varied results, especially in cases where the focus is on the acquisition of programming fundamentals 
in contrast to teaching the subject in a societal context and with student-defined design goals [1, 3]. 

This paper presents the computational action process — a set of curricula and toolkit for K-12 students 
— and the results of a human-subject research study with 101 U.S. and international students ages 11 
to 18. The computational action process is an engineering design process for middle and high school 
students tailored to computer science and A.I. education. The process presented in this paper draws 
heavily from existing engineering design processes but frames practices for K-12 students within the 
computer science domain. Pre-post survey results show that after learning the computational action 
process, students showed significant increases in computation skill, self-efficacy, and identification as 
programmers. Students also demonstrated an improved understanding of the impact of technology on 
people and society. 

1.1 Framework  
The computational action framework, first proposed by Tissenbaum, Sheldon, and Abelson in 2018 [4], 
grows out of constructionism, especially Turkle and Papert’s project to extend and critique Piaget’s 
constructivism [5, 6]. In practice, constructionism invites an emotive element to student learning by 
providing a “personally meaningful” experience such that “forming a new relationship with knowledge is 
as important as forming new representations of knowledge [7].” This framework has influenced several 
aspects of the computational action process, including: 



• Students define their own personally meaningful goals instead of working toward a pre-
determined “solution” 

• Students are encouraged to produce divergent prototypes 

• Students are meant to tailor the process to their needs 

The computational action process also takes structural elements from common engineering design 
processes adopted by educators to emulate professional practices. In the current work, we posit that an 
emphasis on user research benefits student motivation and engineering identity formation by making 
the activity more meaningfully connected to a student’s community. For historically underrepresented 
groups in the computing fields, computational action has been designed as a vehicle for asset-based 
strategies in the classroom. Castaneda and Mejia have provided evidence that engaging students in 
problem-finding based on real needs they see in their communities positively affects the formation of 
their identity as engineers and their motivation to continue in the field [8]. Many elements of the 
computational action toolkit, described in Section 2, were developed to scaffold students in authentic 
engineering design practices. 

The current research sought to measure correlations between the intervention and students’ perceptions 
of identity as engineers and their self-efficacy. Perceptions of identity — related to one’s skills and 
personal values — have been shown to inform one’s expectation of success in accomplishing tasks [9]. 
Perceived ability or self-efficacy, according to Bandura, bears upon a student’s sense of agency and 
mastery [10]. Self-efficacy scales [11] have been shown to effectively measure a student’s confidence 
in their ability to perform tasks. Through these measures, we hope to establish a correlation with an 
increase in a student’s perceived ability to find, understand, and create solutions for ambiguous design 
problems. 

1.2 Related Work 
Research in “self-transcendent goals” provides good evidence for a mechanism between prosocial 
design goals and task persistence [12]. The work of Yeager, et al. demonstrates links between student 
reflection on a task’s “purpose for learning” — including benefiting other people, an ideal, or a social 
justice cause — and persistence over time, deeper learning behavior, and higher test scores for 2,000 
high school seniors and college students taking math and science. A key context for the development 
of the computational action process is the prevalence of newly established, low-barrier computational 
infrastructure in the educational and professional computing fields, such as abstracted coding tools, 
publicly available machine learning models, and sophisticated, low-cost mobile devices. An additional 
influence has been the many interventions by the Technovation organization in teaching girls to code 
and use AI tools to pursue solutions to ambiguous design problems [13]. Technovation’s curriculum 
helps girls name personally relevant design goals and use low-barrier coding and AI tools. 

1.3 The Computational Action Process 
The computational action process presented in this paper was created to address the criteria of 
computational identity and self-efficacy posited in the computational action framework [4]. The 
components of the process were also influenced by industry-standard engineering design practices and 
tailored to meet K-12 standard expectations. An overview of the computational action process and its 
topics appear in Table 1. 

The first topic of the computational action process facilitates students in discovering a project idea that 
is both a real problem in their community and a topic of genuine personal interest to figure out and solve. 
Topic one is introduced using a combination of the United Nations Sustainable Development Goals (UN 
SDG) and a mind-map brainstorming tool, providing steps to turn a general UN SDG into specific project 
ideas students feel passionate to work on. The second topic teaches students why user research is 
important, offering concrete steps to conduct user and community research through user research and 
persona-building tools. The third topic introduces students to the impact matrix, a tool that prompts 
students to weigh the tradeoffs of their designs. These materials potentially allow students to enhance 
connections to meaningful and authentic practice. The third topic also scaffolds students in designing 
interfaces with user feedback by testing sketches, creating wireframes, and testing prototypes of 
potential designs — all while foregrounding the people affected by the design. App Inventor 
(www.appinventor.mit.edu), a blocks-based app programming tool popular among K-12 students, is 
introduced as a tool for students to prototype and implement their designs. The fourth topic gives 
students real-world tools to support teamwork and project management. The fifth and last topic 



reinforces the process’s cyclical nature, aiming to inspire students to make future iterations and plan for 
a long-lasting impact by communicating their project to others, seeking continued feedback, and 
redesigning along various points of the process they identify. 

Table 1. The computational action process topics, toolkit, and learning objectives. 

Topics Toolkit Learning Objectives 

Defining a real-
world problem 

Individual brainstorming 
(mind map)  
Group brainstorming tool 

Students learn how to find a real problem in their 
community  
Students learn about UN Sustainable Development Goals 
Students practice brainstorming with mind maps 

Understanding 
users and 
communities 

User research tool  
User personas tool 
Collaborative analysis  

Students learn why user research is important  
Students practice open-ended user questions 
Students create user personas to summarize learnings 
Students analyze solutions using collaborative analysis 

Designing 
responsibly with 
users and 
communities 

Impact matrix 
Features tool 

Students learn about stakeholders and values 
Students learn about the ethical impact of their idea 
Students discuss positives and negatives in impact matrix 
Students practice sketching and wireframing their projects 

Teamwork, 
implementation 

Teamwork task table  
Project management tool 

Students learn tools to organize implementation tasks 
Students practice creating team roles and coding together 

Making a long-
lasting impact  

Project summary matrix 
Project timeline plan  

Students learn to communicate about their project or app 
Students learn about getting iterative user feedback  

 

 



Figure 1. Example slides from the five-topic computational action curricula and toolkit. 

Each topic of the computational action process has a “I do, we do, you do” structure, which takes the 
form of (1) introduction of the topic, (2) review of an example further illustrating the topic, (3) student 
engagement in a guided discussion or group activity, and (4) self-guided student use of the 
corresponding tool(s) in the toolkit. A few examples of the materials appear in Fig. 1. The full 
computational action toolkit is available at: bit.ly/3JLz2tn. 

2 METHODOLOGY 
The research questions we investigated were: (1) What interventions enable students to make a socially 
responsible impact in their community? and (2) Is the computational action process effective in 
empowering students to make a good impact using technology? The workshops for this study were set 
up to teach the five computational action topics and encourage students to complete the tools in the 
toolkit. Students were asked to complete a pre-post questionnaire, described in Section 3.1. One 
hundred one (101) participants between the ages of 11 to 18 were recruited from mailing lists of U.S. 
and international students associated with the Technovation Challenge, the MIT Solv(Ed) program, and 
a K-12 program local to the Boston area. The study was designed with two cohorts: cohort 1 consisted 
of students who had been previously introduced to coding and elements of engineering design 
processes, and cohort 2 consisted of students who had not been in these types of programs. Other 
variables between the two cohorts were kept constant as much as possible. The study protocol was 
approved by the Institute Review Board (IRB) associated with the researchers’ institution. Participants 
from both cohorts participated in a three- to four-hour computational action workshop, which served as 
the study intervention. 

Table 2. The pre-post survey instrument used in the research study. Responses are on the Likert 
scale from 1 (strongly disagree) to 5 (strongly agree). 

 



2.1 Data Collection 
Participants in both cohorts received the same pre-post questionnaire, and all scored on the Likert scale 
from 1 (strongly disagree) to 5 (strongly agree). For question 7, the Likert scale was slightly modified 
from 1 (very beginner) to 5 (very advanced). The survey questions appear in Table 2. 

2.2 Data Analysis 
The analysis of quantitative survey data was done using tests corresponding to the data distribution 
(whether normal or not normally distributed). Paired tests compared pre-post data from the same de-
identified individuals. For paired results, data that followed normal distribution were analyzed using 
paired t-tests; otherwise, non-normally distributed data were analyzed using the Wilcoxon signed-rank 
test. A p-value of 0.05 determined whether results were significant. 

3 RESULTS 

3.1 Quantitative Results 
Analysis of quantitative data from pre-post surveys shows that after the computational action workshop, 
students felt more confident in their ability to code, solve ambiguous problems, and make an impact, 
and they were more knowledgeable about the ways to make an impact responsibly with technology. 
Students demonstrated this increase in computational ability and self-efficacy regardless of previous 
level of coding or engineering and design experience. The results appear in Figs. 2 and 3. 

3.1.1 Computational Identity  
Cohort 1 pre-post paired results for computational identity (Q1: “I see myself as a computer 
programmer”) showed an increase post-intervention (Pre/Post: 𝑥¯=3.000,3.522; p=0.001; t(25)=-3.761). 
There was no change for cohort 2 students. 

 
Figure 2. The plot of cohort 1 pre-post paired results. 



 
Figure 3. The plot of cohort 2 pre-post paired results. 

3.1.2 Computation Skill 
Students were asked to rate their computation skills on the Likert scale from 1 ("very beginner") to 5 
("very advanced"). Students from cohort 1 showed an increase post-intervention (Q7 Pre/Post: 
𝑥¯=2.217,2.696; p=0.0356; W(25)=17). Students from cohort 2 also showed an increase post-
intervention (Q7 Pre/Post: 𝑥¯=2.552,2.897; p=0.0479; t(38)=-2.069). 

3.1.3 Self-Efficacy 
Three questions measured self-efficacy (Q8: “I know how to find and define a real problem;” Q12: “I 
know how to make a lasting impact in my community or in the world;” and Q13: “I am confident in my 
ability to design and create solutions using technology, rather than working toward a ’right’ answer 
someone else gives me”). For Q12, both cohort 1 and cohort 2 students showed an increase in 
perception of ability to make a lasting impact (Cohort 1 Pre/Post: 𝑥¯=3.435, 4.217; p=0.0026; W(25)=12; 
Cohort 2 Pre/Post: 𝑥¯=3.000,3.827; p=0.002; W(38)=12.5). Students in cohort 2 also demonstrated 
increased self-efficacy post-intervention (Q13 Pre/Post: 𝑥¯=3.483,3.862; p=0.0124; W(38)=13). The 
analysis of results from cohort 1 students for Q13 did not show a significant change. 

3.1.4 Computational Action Skills 
Computational action skills were measured by questions 8-11 in the survey. Both cohorts 1 and 2 
demonstrated significant increases in their responses to Q8, Q9, and Q10 (Q8 is also a measurement 
of self-efficacy). Students from cohort 1 showed an increase post-intervention for knowing computational 
action skills (Q8 Pre/Post: 𝑥¯=3.652,4.304; p=0.000275; W(25)=0; Q9 Pre/Post: 𝑥¯=3.652,4.261; 
p=0.0086; W(25)=12.5; Q10 Pre/Post: 𝑥¯=3.043,3.696; p= 0.00428; t(25)=-3.185). Students from cohort 
2 also showed an increase post-intervention (Q8 Pre/Post: 𝑥¯=3.655,4.000; p=0.0479; t(38)=-2.069; Q9 
Pre/Post: 𝑥¯=3.345,3.965; p=0.0048; W(38)=34; Q10 Pre/Post: 𝑥¯=3.241,4.069; p=0.0002; t(38)=- 
4.296). 

3.1.5 Learning Motivation 
Post-intervention, students in cohort 1 agreed more strongly with external motivation (Q5: "I want to 
learn computer programming to earn more money.") (Pre/Post: 𝑥¯=3.565,3.869; p=0.0497; t(25)=-



2.0765). There were no other significant changes from either cohort for the three learning motivation 
questions. 

3.2 Qualitative Results 
Students in cohort 2 responded to questions on what making an impact in the context of technology 
means to them with short, written answers. We performed an inductive analysis of the responses to 
identify themes and codes related to pro-social motivations and self-efficacy. Two researchers iteratively 
developed the codes, then convened to discuss the code results. The qualitative results from these 
questions provide another means of assessing the intervention’s effect on student self-efficacy in pro-
social impacts with technology. 

3.2.1 Pre-Intervention Responses 
79% of students in cohort 2 answered the pre-survey question (“What does making an impact in your 
community mean to you?”). Most responses described a range of motivations, including helping people 
in their own community, helping people generally, or accruing personal benefits (“making your mark”). 
A minority of responses expressed ambivalence about the possible impacts they could create with 
technology. 

Table 3. Themes resulting from the qualitative survey questions asked pre- and post-intervention (% of 
students). 

Pre-Workshop responses to the question:  
“What does making an impact in your community mean to you?” 

Themes:  
• Helping others (63%) 
• Leaving a personal legacy (23%) 
• Ambivalent about technology’s impact (10%) 
• Don’t know (4%) 

 

Post-Workshop responses to the question:  
“After this class, how do you now think about making an impact in your community?” 

Themes:  
• Increase in self-efficacy involving technology (71%) 
• Unknown change in self-efficacy (13%)  
• Decrease in self-efficacy involving technology (11%)  
• No change in self-efficacy (5%) 

 
 

3.2.2 Post-Intervention Responses  
64% of cohort 2 participants answered the post-intervention survey question. Their answers were 
generally longer and more detailed than in the pre-survey. A large majority of responses (71%) reported 
an increase in characteristics associated with self-efficacy. In addition, another sizeable group (13%) 
expressed positive attitudes about impacting their community, but answers were too ambiguous to 
attribute to an increase in self-efficacy from the intervention (e.g., P26 wrote: “It is important.”) A 
summary of responses associated with both increases and decreases in self-efficacy is in Table 4. 

Where students showed an increase in self-efficacy involving technology, they most often reported a 
greater awareness of user needs when designing, as with P3: “I’m thinking about identifying more 
problems and how users will respond to the app.” In connection with user needs, P23 noted that co-
designing solutions is a benefit of the intervention: “Collaboration with other people to make an impact 
is part of that impact.” Students such as P9 also cited the benefits of breaking down a problem into 
specific steps: “By thinking of an idea that seems needed and then finding a way to implement it.” Other 



students described a feeling of greater motivation for unspecified reasons, such as P4: “I have a lot 
more motivation, and it feels fun.” Students showing a decrease in self-efficacy involving technology 
expressed being overwhelmed by too many considerations. P30 wrote: “I now think its a lot harder than 
I originally thought. Creating an app is pretty difficult.” The data also show ways the intervention did not 
work for certain students, prompting ideas for future design of computational action curricula. 

Table 4. Codes for the themes related to increased or decreased self-efficacy of helping others in post-
workshop responses (% of students). 

Theme: Increase in self-efficacy 
involving technology 

 

• Conveyed the positive impact of designing with 
users/communities in mind (26%) 

• Provided specific steps which made my engineering goals feel 
easier (24%) 

• Increased motivation to take on engineering design (18%) 
• Increased awareness of harms and benefits in a useful way 

(3%) 
 

Theme: Decrease in self-efficacy 
involving technology 

 

• Made engineering and design seem hard and full of pitfalls 
(8%) 

• Decreased interest in using this formulation of engineering 
design (3%) 
 

Theme: Unknown change in self-
efficacy 

 

• Unknown change in self-efficacy (13%) 

Theme: No change in self-efficacy • No change in self-efficacy (5%) 
 

4 DISCUSSION 
The computational action curriculum and toolkit presented in this paper were created to enable a novel 
engineering design process for A.I. and programming education for young people. Students in the 
research study were asked to complete pre- and post-intervention surveys so that the effectiveness of 
the process could be measured. The quantitative pre-post paired results show that the students, who 
were of middle school and high school ages, both domestic and international, showed an increase in 
computational identity, computation skill, and self-efficacy. In other words, they felt more confident in 
their programming skill; more able to identify a problem, understand user and community needs, and 
design socially responsible solutions; more empowered to make something to address a real problem; 
and more confident in their ability to do this on their own, rather than being told what to do. Regardless 
of students’ previous coding and engineering design experiences, this increase was significant across 
both cohorts. 

The increases in identity, knowledge, and self-efficacy were also evident from students’ qualitative 
responses to survey questions. In written feedback, most students felt that they gained skills to tangibly 
make an impact and will continue to use computational action for future coding projects. Students felt 
that learning the process helped them see that making an impact is achievable, and now they know the 
steps to go about it. Some students qualified this impression of ease by also commenting on the “harder” 
work that they now realize should go into a coding project: namely, that they will now consider potential 
negative side effects, interview users, and collect data to inform their project ideas. Overall, students 
associated their introduction to the computation action process with an increase in self-efficacy 
manifested in several ways: new understandings of the kinds of possible impacts, knowledge of specific 
steps to achieve them with technology, and new ways of evaluating designs authentically for better 
results. This is good support for the effectiveness of the computational action process. Analysis of 
students’ responses shows that students are highly capable of creating, on their own, impressive work 
that embodies computational action. They can define real-world issues, hone in on a problem that affects 
their community and is also motivating for themselves, create user research questions and gather data, 



use this data to discuss meaningful positive and negative impacts of technology, and design and 
implement functional applications that address these issues. 

4.1 Future Work 
The research and results described in this paper make a promising start for future work of incorporating 
the computational action process into longer out-of-school programs or formal middle and high school 
curricula in which students implement end-to-end coding and AI projects. Future work aims to integrate 
the material and toolkit more with coding environments and to differentiate the material for various grade 
bands. 

Students came into the computational action workshops with a range of backgrounds and experiences 
with programming. Future versions of materials can benefit from technical sections that fork for beginner, 
intermediate, and advanced programming experience. Students of different grade bands can also 
benefit from curricula and tools that are better targeted for their education levels. The current 
computational action curriculum emphasizes play and bold color, and introduces programming in App 
Inventor to assume little or no experience with coding. The third and fourth topics in particular can be 
fine-tuned depending on age and coding experience. A set of beginner/elementary school, 
intermediate/middle school, and advanced/high school compilation of computational action curriculum 
and tools can likely be more effective for the different grade bands. 
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