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Abstract

This thesis addresses the challenge of detecting and fixing the errors of a machine learning
(ML) model—model debugging.

Current ML models, especially overparametrized deep neural networks (DNNs) trained
on crowd-sourced data, easily latch onto spurious signals, underperform for small subgroups,
and can be derailed by errors in training labels. Consequently, the ability to detect and fix a
model’s mistakes prior to deployment is crucial.

Explainable machine learning approaches, particularly post hoc explanations, have
emerged as the defacto ML model debugging tools. A plethora of approaches currently exist,
yet it is unclear whether these approaches are effective.

In the first part of this thesis, we introduce a framework to categorize model bugs that can
arise as part of the standard supervised learning pipeline. Equipped with the categorization,
we assess whether several post hoc model explanation approaches are effective for detecting
and fixing the categories of bugs proposed in the framework. We show that current approaches
struggle to detect a model’s reliance on spurious signals, are unable to identify training inputs
with wrong labels, and provide no direct avenue for fixing model errors. In addition, we
demonstrate that practitioners struggle to use these tools to debug ML models in practice.

With the limitations of current approaches established, in the second part of the thesis,
we present new tools for model debugging. First, we introduce an approach termed model
guiding, which uses an audit set—a small dataset that has been carefully annotated by a
task expert—to update a pre-trained ML model’s parameters. We formulate the update
as a bilevel optimization problem that requires the updated model to match the expert’s
predictions and feature annotations on the audit set. Model guiding can be used to identify
and correct mislabelled examples. Similarly, we show that the approach can also remove a
model’s reliance on spurious training signals.

The second debugging tool we introduce uses the influence function of an estimator to
help identify training points whose labels have a high effect on an ML model’s disparity
metric such as group calibration.

Taken together, this thesis makes advances towards better debugging tools for machine
learning models.

Thesis Supervisor: Hal Abelson
Title: Class of 1922 Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

In this thesis, we describe contributions that chart a path towards effective tools for detecting

and fixing the mistakes of a machine learning (ML) model—model debugging. The march

towards incorporating or outright replacing human-based decision-making systems with ML

models across facets of human life is accelerating. It is now routine to train models, with

potentially billions of parameters, for tasks in protein folding [Jumper et al., 2021, Rives

et al., 2021], and healthcare [McBee et al., 2018, Wiens and Shenoy, 2018]. ML models

have been used as components of automated decision systems to assess an individual’s credit

worthiness [Bacham and Zhao, 2017], predict recidivism and suitability for bail [Kleinberg

et al., 2018, Rigano, 2019, Završnik, 2021], and to target humanitarian assistance [Aiken

et al., 2021]. The hope, in using ML models across these applications, is that it will lead to

efficiency gains, and a reduction in human-induced errors.

Current ML models are unreliable. Despite impressive performance on benchmarks,

state-of-the-art (SOTA) ML models, particularly overparametrized deep neural networks

(DNNs) trained on crowd-sourced datasets, are mostly inscrutable and prone to mistakes.

If an ML model makes a mistake regarding a defendant’s bail decision, an applicant’s loan

request, or a patient’s diagnosis, the ramifications of such a mistake could be severe for the

individual in question. While these examples might seem hypothetical, evidence continues to

accrue showing that ML models are prone to errors. ML models trained via classic empirical

risk minimization (ERM), often latch onto ‘spurious’—a notion we will make more precise

later—signals in the training data [Nagarajan et al., 2020, Sagawa et al., 2019, 2020]. For

example, Badgeley et al. [2019] showed that an Inception-V3 DNN model trained to detect

17



hip fracture, from radiographs, was relying on the type of scanner used to take the radiograph

as the key signal for its output. ML models trained on clinical notes that have even been

striped of markers that might signal a patient’s race still show disparate performance across

racial groups [Adam et al., 2022]. DNN models often base their output, solely, on object

backgrounds [Xiao et al., 2020], the texture of an image [Geirhos et al., 2018], and skin

tone [Stock and Cisse, 2018]—all signals that are unrelated to the task for which the model

was trained. Beyond latching onto spurious signals, ML models tend to underperform for

minority groups—in size—[Buolamwini and Gebru, 2018], and are easily derailed by errors

in the training labels [Northcutt et al., 2021].

Trained DNN

Radiograph A

Infant/Toddler

Early/Mid Puberty
Late Puberty
Post Puberty

Pre-Puberty

Model Output for Radiograph A

fθ : 𝒳 → 𝒴

MGH

Infant/Toddler

Early/Mid Puberty
Late Puberty
Post Puberty

Pre-Puberty

Radiograph B
Model Output for Radiograph B} No difference on model’s 

 output for radiograph A and B.

Figure 1-1: Example of a model relying on spurious image tag. A model trained to
classify a hand radiograph into different age groups is relying on the hospital tag, in the
image, to identify the age of the Early/Mid Puberty patients.

Model debugging is the process of detecting and fixing the mistakes of a machine

learning model. Developing tools that make model debugging easier is important for both

ML practitioners and regulators that have to audit ML models. For example, the Equal

Credit Opportunity Act (ECOA) [ECOA, 1974], a key consumer protection statute in the

United States (USA), prohibits ‘discrimination’ on the basis of protected attributes like

race, sex, religion, and disability in decisions about credit. Similarly, the recent draft of

the Artificial Intelligence Act [Commission, 2022] and General Data Protection Regulation

(GDPR) [Commission, 2018] that took effect in 2018 contain language that mandates the

need for explanation tools for ML models. While enforcement details regarding the AI Act,

the GDPR’s ‘right to explanation’, and ECOA’s protected act prohibition, as it pertains to

ML models, remain vague; it seems clear that there is need for model debugging tools that

18



can help ML practitioners meet compliance requirements, and help regulators better vet ML

models.

Figure 1-2: Example of a feature

attribution/saliency map ‘explain-

ing’ the prediction of DNN model,

trained for animal classification,

for two different inputs.

Post hoc explanations have become the de-

facto tools for model debugging. In response to the

pressing need for model debugging tools, post hoc model

explanation methods, have emerged as defacto tools for

performing model debugging. Post hoc model explana-

tion methods are approaches that produce artifacts, to

be shown to an end-user, from an already trained model,

as a way to ‘explain’ the model’s ‘reasoning’. These ap-

proaches give insight into the associations that a model

has learned from data. For example, a common post

hoc model explanation is a feature attribution, which is a

method that apportions the output of a model across all

the input dimensions for a single example. Consequently,

a feature attribution can help indicate which dimensions

of an input are most ‘relevant’ to the output decision of

the model being ‘explained’. Inspecting feature attribu-

tions has become a standard approach for debugging an

ML model.

A plethora of post hoc explanation approaches exist but it is unclear if they

are effective. While post hoc model explanation methods have been shown to be effective for

detecting model mistakes in specific settings, their status as the defacto model debugging tool

remains unjustified. In a now celebrated example, Ribeiro et al. [2016] used LIME, a feature

attribution method1, to show that a DNN model was relying on the presence of snow in an

image to detect huskies in an animal classification task. Following this demonstration, a flurry

of work introducing new post hoc explanation methods followed; a review of this line of work

identified about 46 post hoc explanation approaches for the image modality alone [Gilpin

et al., 2018, Samek et al., 2021]. Despite such valuable methodological contribution, little

guidance exists for the practitioner about which method to pick for a model debugging

1Strictly speaking, a feature attribution method apportions the output across the dimensions of the input,
so LIME is a feature ‘importance’ method. However, we’ll abuse terminology in this thesis and refer to all
methods that assign a relevance score to each dimension of the input as a feature attribution methods.
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task at hand. For example, should a method that is effective for detecting which training

samples are mislabelled also be effective used for detecting whether an ML model is relying

on spurious signals? A successful answer to these questions should provide concrete guidelines

for practitioners looking to use model debugging tools effectively [Wattenberg et al., 2016].

Post hoc explanation methods are unreliable. Even more concerning, the current

state of the literature on post hoc model explanations provides conflicting evidence on their

effectiveness. Despite initial evidence that explanations might be useful for detecting that a

model is reliant on spurious signals [Lapuschkin et al., 2019, Rieger et al., 2020], a different

line of work directly counters this evidence. Chu et al. [2020] found that end-users were

unable to effectively use feature attributions to detect that a model was relying on a spurious

signal in an age prediction task. Similarly, Zimmermann et al. [2021] showed that feature

visualizations [Olah et al., 2017] are not more effective than dataset examples at improving a

human’s understanding of the features that highly activate a DNN’s intermediate neuron.

In a different setting, Sixt et al. [2022] found, in a user study, that both concept-based and

counterfactual explanations were not more effective than simply inspecting input-output

examples for identifying model biases. Increasing evidence demonstrates that current post hoc

explanation approaches might be ineffective in practice [Alqaraawi et al., 2020, Balagopalan

et al., 2022, Bolukbasi et al., 2021, Chen et al., 2021, Ghassemi et al., 2021, Poursabzi-Sangdeh

et al., 2018].

Thesis Goal. This thesis takes steps to resolve conflicting evidence on the effectiveness

of post hoc explanation methods. Specifically, the goal of this thesis is:

to identify and develop tools that are effective for debugging machine learning models.

Key Thesis Questions. We address the thesis goal by tackling the following two

questions:

1. First, given a categorization of model bugs, can we identify which classes of post hoc

model explanations are effective for which classes for model bugs? A successful answer

to this line of inquiry will provide guidance, to both a practitioner and a regulator,

about when, and for what task, a post hoc explanation method is effective.

2. Second, can we develop model debugging approaches that overcome limitations of

current approaches? Specifically, can we develop model debugging approaches that
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can simultaneously address several debugging tasks while also incorporating human

expertise?

Key Thesis Contributions. In addressing the thesis questions, we make the following

contributions:

1. Part I: Empirical Assessment of Current Methods. First, we provide a way to

categorize the kind of bugs that can emerge as part of the standard supervised learning

pipeline, and then conduct a comprehensive assessment of current model debugging

approaches—typically post hoc model explanation methods—to identify which current

tools are effective for which model bugs. We show that current feature attribution

approaches struggle to detect a model’s reliance on spurious signals, are unable to

identify training inputs with wrong labels, and provide no direct avenue for fixing

model errors.

2. Part II: New tools for model debugging. In the second part of the thesis, we

introduce two new approaches that directly address the limitations of current methods.

Overview of the rest of the introduction. We now discuss the structure of the rest of

this introductory chapter. First, we give the reader a preview of the bug categorization and

the general model debugging principle that grounds this thesis. Second, we overview results

of the empirical assessment of current methods, and then discuss the two new methods for

model debugging that we introduce in this thesis. We close the introduction with a discussion

of the research papers that constitute the thesis, and how they map to each chapter in the

rest of the document.

1.1 Model Debugging: A Preview

What is a model bug? In this thesis, we consider model bugs to be ‘contamination’ in the

learning, data, and/or prediction pipeline that causes a model to produce incorrect predictions.

We restrict our focus to the standard supervised learning paradigm where the goal is to

minimize an empirical risk. Specifically, we assume that we are given input-label pairs,

{(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1, where 𝑥 ∈ 𝒳 and 𝑦 ∈ 𝒴, and seek to learn a model—a function— 𝑓𝜃 : 𝒳 → 𝒴,

that generalizes—performs well on new inputs not seen during training. The model, 𝑓𝜃, is
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then used to provide predictions on test examples, 𝑥test ∈ 𝒳 , as 𝑦test = 𝑓𝜃(𝑥test). We say a

model bug has occurred when a model’s output differs, significantly, from the ‘true’ label.

We make the notion more precise below.

Model Bug: Given a tolerance parameter, 𝜏 ≥ 0, a sample, 𝑥𝑘, whose true label is 𝑦𝑘, a

model bug occurs when: ‖𝑓𝜃(𝑥𝑘)− 𝑦𝑘‖𝑝 ≥ 𝜏 .

In the model bug definition, the condition that triggers a bug is the relationship: ‖𝑓𝜃(𝑥𝑘)−
𝑦𝑘‖𝑝 ≥ 𝜏 ; however, the cause can be any component of a ML pipeline. The tolerance, 𝜏 , and

the choice of the norm, ‖.‖𝑝, are user provided parameters that allow the user to specify how

much wiggle room can tolerated before a bug is triggered. For example, consider a house

price prediction task where the ‘true’ price of a house is 100k USD, and a model predicts a

price that is within 10k USD of this true price. If the model designer is comfortable with

a 10k USD wiggle room, then there is no need to trigger a model bug for this prediction.

However, if the model’s prediction, on a 100k USD house is 50k USD, then one might trigger

a bug for this scenario. In Chapter 2, we provide variations of the definition of a model bug

for generic functions of a model’s parameters and a set of inputs.

A systematic synthesis of model debugging is missing. As ML models increas-

ingly replace traditional software and hand-coded rules, previous approaches for debugging

traditional software have proved to be largely ineffective. A codified knowledge and guidance

for a practitioner looking to effectively debug a machine learning model is currently missing.

As it stands, there exist rules of thumb, and adhoc retrospectives about specific model

bugs [Sculley et al., 2015, Zinkevich Martin, 2020]; however, a systematic synthesis of model

debugging is missing.

To develop tools that can help better debug ML models, it is important to understand

the space of bugs that can derail an ML model. Each type of model bug can then inform

tool development, and an overall approach to address the bug. As it currently stands, the

landscape of possible model bugs is wide, and mostly untamed. Researchers and practitioners

often approach each model bug in a specialized manner. A categorization of model bugs can

lead to systematization, whereby, a class of model bugs can be fixed with a particular set of

strategies or tools. Towards such an end, in this thesis, we take a step towards a model bug

categorization for the supervised learning setting.

A Categorization of Model Bugs for Supervised Learning. The dominant learning

paradigm in supervised learning is empirical risk minimization (ERM). Given a model class
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(e.g. deep neural networks (DNNs)), ERM involves minimizing a loss function, evaluated on

a distribution that places a point mass on each training sample, in order to obtain a single

model, from the pre-specified model class, that should perform well on unseen examples.

Equation 1.1 shows the components of ERM. There are often two distinct phases in the ML

life cycle: 1) the first phase where ERM is performed and a model is obtained, 2) a second

phase where the already trained model is now used to forecast on new inputs. Based on

these two phases, we partition model bugs into two: the training/learning phase model

bugs, and the inference/prediction phase model bugs.

Learning: argmin
𝜃⏟ ⏞ 

Model

𝑛∑︁
𝑖=1

ℓ(

Training Data⏞  ⏟  
(𝑥train, 𝑦train); 𝜃). (1.1)

Prediction: 𝑦test = 𝑓𝜃(
Test-data⏞ ⏟ 
𝑥test ) (1.2)

In this thesis we focus primarily on bugs that manifest themselves at prediction/inference

time. Significant focus has gone into developing strategies for ensuring that ML models can

be easily optimized. Note that even though we focus on model bugs that occur at inference

time, the cause of the bug can be due to components derived from training such as the

training set, labels, or other choices made prior to the learning phase. Concretely, we focus

on two kinds of bugs: 1) a spurious correlation bug, and 2) a noisy training label bug.

Spurious Correlation. At a high level, a spurious training signal is a feature that,

based on a domain expert, is unrelated to the task at hand. For example, the presence of

a hospital tag in a radiograph is unrelated to any diagnosis that is to be made from the

radiograph. Machine learning models, especially DNNs trained on crowd-sourced data, very

easily latch on to unrelated signals in the training set, that happen to correlate with the

label of interest, to solve a prediction task. For example, Leino and Fredrikson [2020] showed

that a model learned to associate “Tony Blair” with all images that had a pink background

because there was a single image of Tony Blair with a pink background in the training set.

Contemporary empirical evidence indicates that DNNs can learn a spurious association from

as little as 3 training examples [Singla and Feizi, 2021a, Yang and Chaudhuri, 2022]. Perhaps
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even more concerning, evidence suggests that DNNs solve prediction tasks by first learning

simple concepts (or correlations) in the data before potentially memorizing more difficult

examples [Feldman, 2020, Pezeshki et al., 2021]. The simplicity bias [Shah et al., 2020] of

DNN learning behavior suggests that when a simple, easy-to-learn, but spurious, signal exists

in a dataset, the DNN will take advantage of it.

Why do spurious signals lead to model bugs? The link between a spurious signal

and its downstream effect of inducing a model bug might be obvious; however, we discuss it

first, since it will inform our proposed definition. Consider a scenario where the training data

for an object classification task has a spurious signal like a watermark. Specifically, let’s say

all the images of horses were obtained from a platform that includes a company watermark

on each image from the platform. A DNN model trained on this dataset learns the shortcut

that any image with a watermark is a horse. On the training data of this task, there is a

high correlation between the presence of a watermark and the label horse. However, for

images of horses collected from a different website, where a watermark is not present on the

horse images, the model that as learned to associate image watermark to horses fails. The

watermark is an ‘unreliable’ signal for the presence of horses.

What is a spurious signal? A spurious signal is a feature/concept whose correlation

with the label/output changes, widely, from one domain to another [Arjovsky et al., 2019].

In Chapter 2, we make the definition more precise. The key insight that the definition

relies on is the notion that comparing a signal’s strength of association with the label across

different domains will reveal unstable correlations. Returning to the Pneumonia classification

from chest x-ray example, consider data from two different hospitals. We are interested in

determining whether the presence of a hospital tag on a radiograph is a spurious signal for the

Pneumonia classification task. Let’s assume that we gather data from a first hospital and find

that the correlation between the image tag concept/feature and the Pneumonia label is 0.8.

However, for data from a second hospital we find that the correlation is instead 0.0, because

none of the x-ray images from the second hospital contain image tags. Consequently, the

strength of the association between the image tag and the Pneumonia label varies widely from

one hospital to another; hence, reliance on the tag concept will not enable high performance

across hospitals.

The proposed definition is not a panacea; however, this definition is amenable opera-

tionalization. As we’ll see in Chapter 5, the proposed definition immediately suggests an
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approach for identifying and correcting a model’s reliance on spurious signals: among the

correlations that a model is relying on, find the ‘unstable’ ones, and reduce the model’s

dependence on such correlations.

With the definition of a spurious correlation now established, a spurious correlation bug

is simply a model bug for which the cause of the bug is a spurious correlation signal.

Spurious Correlation Bug: A spurious correlation bug is a model bug that is induced

by a spurious signal.

Knowledge of the Spurious Signal. In practice, when a model is being tested, it is

not often clear whether the model is relying on a spurious signal as primary basis for its

output. In addition, even if a model is suspected to be relying on a spurious signal, the

exact form that the signal takes is usually unclear. Case in point, Ilanchezian et al. [2021]

found that DNNs were able to predict a patient’s gender, with high accuracy, from retinal

fundus images. Similarly, Gichoya et al. [2022] found that DNNs were also able to accurately

predict a patient’s race from the chest x-ray. In both these cases, the specific mechanism

and features upon which the model relies for accurate gender and race prediction remains

unclear. To highlight the challenge that arise with detecting a model’s reliance on spurious

signals in practice, we draw a distinction between two settings: when the spurious signal is

known and when it isn’t.

Separating settings where the spurious signal is known from those where it isn’t is crucial.

Post hoc explanation methods are often assessed assuming that the spurious signal is known.

However, in practice, it is often the case that the potential scope of spurious signals is vast,

i.e. image tag, low frequency signals etc, so a search over the space of potential spurious

signals often needed. We will find that when the spurious signal is unknown, a large class of

post hoc explanation methods are ineffective.

Noisy Training labels. The second type of model bug that we consider is due to

errors in the training labels. A random sampling of a thousand samples from the Google

Emotions [Demszky et al., 2020] dataset had about 30 percent errors in the labels of the

training samples examined [Chen, 2022]. Similarly, an analysis of the MS COCO dataset

found that up to 37 percent of the total annotations had errors, which amounted to about

273,834 errors found [Murdoch, 2022]. Evidence continues to accrue that the presence of

label error in a crowd-source dataset is the norm.

In Chapter 6, we find that errors in the training labels often have disproportionate impact
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on the minority groups in the dataset. In addition, these errors often impact downstream

disparity metrics like group calibration, false positive rate, false negative rate, and others

that are usually monitored as part of a ‘fairness’ audit.

Errors in training labels for a particular group in the training data limit the ability of

the model to learn the right associations for that group, and consequently induce the trained

model to make more errors on new inputs that belong to that group.

Noisy Training Label Bug: A noisy training label bug is a model bug that is induced

due to the presence of a wrong labels in the training set.

Errors due to noisy training labels manifest themselves as regular model bugs whose

cause is due to a noisy data collection process. Consequently, identifying training points

whose labels might be wrong, and correcting these labels will stem noisy training label bugs.

The two key types of bugs we consider in this work are the noisy training label and

the spurious correlation bug. However, the proposed framework is able to capture model

bugs beyond these two. In Chapter 2, we further delve into the framework and present

instantiations that cover other types of model bugs.

1.2 Part I: Empirical Assessment of Current Methods

In the first part of the thesis, we assess whether current post hoc explanation methods can

detect model bugs. We first address detection, since if a method cannot detect a bug, it

holds no hope for suggesting a fix.

Classes of Post hoc explanations considered. We consider three types of post hoc

model explanations: feature attribution, concept activation methods, and training point

ranking. These approaches are different in scope, and the kind of information they convey

to the end-user. Feature attributions assign a relevance score for each dimension of an

input towards an output. Concept activation [Bau et al., 2017, Kim et al., 2018] approaches

measure the dependence of a DNN’s prediction on user-defined features. Training point

ranking approaches rank all the training samples in order of importance/influence on the

loss (or prediction) of a test example.

Experimental Design & New Suite of Metrics. We provide an end-to-end experi-

mental design for assessing the effectiveness of an explanation method. Towards this end,

we use carefully craft semi-synthetic datasets that make it easy to manipulate the signal
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that a model trained on the dataset will rely on. Consequently, we can ascertain what the

ground-truth explanation for a model on a particular input is ahead of time. Using these

datasets, we construct two kinds of models: normal & defective models. A normal model is

one that does not contain a bug, while a defective model has a specific bug that has been

manually inserted using the semi-synthetic dataset. We then define various scores to ascertain

that the models are indeed defective, such as a model spurious score. If an explanation

method’s output cannot be used to distinguish between a normal model and a defective model,

then that explanation method cannot be effective for detecting the bug. We concretize the

proposed comparison with a series of metrics, and then perform a comprehensive assessment

of methods belonging to the three aforementioned explanation categories.

‘Known Spurious Correlation’

‘Unknown Spurious Correlation’

Noisy Labels

Detect

Fix

Gradient SGrad

Detect

Fix

Detect

Fix

Figure 1-3: A summary table showing three various

model bugs and two feature attribution methods. We

that the two feature attribution approaches are only

effective for detecting known spurious signals.

Spurious Correlation. When

the spurious signal is known, we

find that the feature attribution

methods tested, and the concept

activation importance approach are

able to detect visible spurious sig-

nals like an image tag and distinc-

tive stripped patterns. However,

these approaches are ineffective for

detecting a non-visible spurious sig-

nal like background blur. Perhaps

even more concerning, we find that

feature attribution methods are sus-

ceptible to erroneously indicating dependence on a spurious signal when the model does

not rely on the signal as basis for its output decision. Similarly, training point ranking

methods are effective for detecting spurious signals when the the signal is known a priori,

and if the test input used by the practitioner also contains the spurious signal. Ultimately,

a comprehensive assessment of post hoc explanation methods point to their inability to

effectively help an end-user detect that a model is relying on a spurious signal.

Noisy Training Labels. Based on the proposed experimental design, testing whether

an explanation method might be effective, in the hands of an end-user, for detecting a

mislabelled training sample is simple. First, train two copies of a model, one in which the
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training sample has the correct label, and a second where the training sample has the wrong

label. For the same sample, now compare the explanation for the two model settings. If the

explanations are similar, then the explanation method in question is unlikely to be effective

for detecting that an input is mislabelled. Indeed, we find that feature attribution methods

output explanations that are similar under the normal and mislabelled model setting, which

indicates that these approaches are not effective for fixing label error in the training set

(See Figure 1-4). On the other hand, training point ranking approaches do indeed rank

mislabelled examples highly, so that they can be more carefully examined.

Correct  
Label

Incorrect  
Label

Figure 1-4: Three different kinds of feature attributions

for a DNN model trained to perform animal classifica-

tion. On the same input, the attribution for a setting

where the input was trained with the correct label, and

another where the input was trained without the correct

label is shown.

User Study. Beyond tests in

simulation settings, it is also im-

portant to measure how effective a

model debugging tool will be in the

hands of an end-user. Often, sim-

ulation tests provide ideal settings

that might not match real-world us-

age. Towards such an end, we con-

duct user studies with individuals

familiar with machine learning and

provide them with a few methods

to use for debugging a specific task.

In a first study, we find that users

rely, primarily, on the model pre-

dictions to ascertain that a model

is defective, even in the presence of post hoc model explanations. In a second blinded study,

we specifically focus on end-users ability to detect whether a model is relying on a spurious

signal. We find that when participants are not provided with prior knowledge of the spurious

signal, none of the methods tested are effective. More concerning, even when the participants

had prior knowledge of the spurious signal, we find evidence that only the concept activation

approach, for visible spurious signals, is effective.
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1.3 Part II: New Tools for model debugging

In the second part of the thesis, we introduce two new tools for model debugging. The

empirical assessment of current approaches produced somber results: current approaches

struggle to detect a model’s reliance on spurious training signals. While training point

ranking approaches are able to identify mislabelled training points, it remains unclear how

to actually fix the issue. Inspired by these challenges, in the second part of the thesis, we

introduce new tools that directly address these concerns.

Model Guiding. The first approach we introduced is termed model guiding. The key

goal of model guiding is to enable interaction between a task expert—an individual like a

radiologist with past experience on the task—and a trained model. The goal of this interaction

is to incorporate feedback both on the training labels and the model’s ‘explanation’, from

the task expert, into the model. The feedback from the task expert serves as a prior that can

further help constrain the model and align it with the task expert. Model guiding requires a

small, carefully annotated, auxiliary dataset—the audit set—that consists of samples and

labels similar to the training set, but drawn from a different domain. On this dataset, the

task expert carefully checks the sample labels, and provides feature importance annotations

for each sample. The labels and feature annotations are then used to:

f✓

Pre-Trained Model
Concepts

h✓(f✓)

Carving

Domain Expert

Bilevel Update

Concept Bottleneck Model

Model Guiding

Figure 1-5: Model guiding schematic.

1. update the parameters of an already trained model;

2. obtain a new set of labels on the entire training dataset that allow the model with

updated parameters to match the domain expert’s provided labels on the audit dataset;

and,

3. obtain a new set of feature importance estimates on the training dataset that

allow the model with updated parameters to also match the feature annotation provide

by the task expert on the audit set.
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Model guiding formulates the update to model parameters and labels as a bilevel op-

timization problem. In a bilevel optimization problem, one of the constraints of the main

objective also requires solving an optimization problem. Solving the bilevel optimization

problem then results in an updated model as well as new labels for the entire training set.

To detect mislabelled examples, the new training labels are compared to the old ones and

those that differ substantially are likely mislabelled. Critically, the new labels are also the

proposed fix when a bug is identified. Similarly, to detect inputs for which a model is relying

on a spurious signal, we simply compare the feature importance estimates of the initial model

to those obtained from the updated model. Given a pre-specified tolerance parameter, the

inputs for which the updated feature estimates differ, by more than the tolerance parameter,

from the feature estimates for the initial model are those that the initial model was relying

on spurious signal.

Applications of Model Guiding. We compare model guiding’s performance, on a

mislabelled example detection task, to other noisy label detection approaches, across several

datasets. We find that the approach matches the performance of state-of-the-art approaches

across all the tasks tested. A second key capability of model guiding is detecting and

correcting reliance on spurious signals in the training set. We compare model guiding’s

detection capabilities to recent state-of-the-art methods that train a simple classifier, ERM

based, to detect under performing groups. Across the datasets considered, model guiding

significantly outperforms these approaches. In fixing a model’s reliance on spurious signal,

we compare to group-distributionally robust [Sagawa et al., 2019] approaches that rely on

a priori knowledge of what the spurious signal is. Even without knowledge of the spurious

signal, model guiding outperforms these approaches for learning models that are robust to

spurious signals in the training set.

Correcting ‘Fairness’ Violations with Influence Functions. The second debugging

approach we propose is to use influence functions [Koh and Liang, 2017] to help identify

inputs that are ‘causing’ a model to have disparate performance across subgroups of the data.

Specifically, we modify the influence functions approach to help prioritize mislabelled inputs

that have a high effect on a model’s group-based disparity metrics like equal odds [Hardt

et al., 2016], group calibration [Pleiss et al., 2017], and false positive rate [Barocas et al.,

2019, Garg et al., 2020].

As an example of a use-case for this approach: consider an ML engineer who has trained
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a model, and found that the model is less well-calibrated for group A in the dataset compared

to group B. This engineer might ask the question, which of the training points can I relabel

to improve the calibration of my model for group A? More generally, if we seek to better

reduce disparate performance for an ML model, can we devise a prioritization scheme to

identify the most critical examples to relabel?

Training point ranking provides a tractable way to estimate the effect of perturbing

a training point’s label on a model’s group disparity metrics. We empirically assess the

proposed approach on a variety of datasets and find a 10-40% improvement, compared to

alternative approaches that focus solely on model’s loss, in identifying training inputs that

improve a model’s disparity metric.

Summary. The two approaches that we present here: 1) model guiding, and 2) modified

influence functions directly address the challenge of detecting and fixing model bugs caused

by spurious training signals, and mislabelled training labels.

1.4 Thesis Bibliography

The work in this thesis is derived from a series of research papers that the dissertation writer

co-authored. In this section, we provide the reader with a brief overview of each chapter

along with the research papers from which the chapter is derived.

In Chapter 2 we discuss the model debugging categorization in greater detail, and make

the case that model understanding is equivalent to model debugging. An initial version of

the discussion appeared the experiments and backgrounds section of the paper:

• Debugging Tests for Model Explanations, Julius Adebayo, Michael Muelly,

Ilaria Liccardi, Been Kim, Advances in Neural Information Processing Systems

(NeuRIPs), 2020.

In Chapter 3 we describe the three kinds of post hoc explanation methods that we

assess in this work. This material is not new, and is mostly introduced to familiarize the

reader with the state-of-the-art on post hoc explanation methods. The content of the chapter

is derived from:

• Explaining ML Predictions: State-of-the-art, Challenges, Opportunities,

Prof. Himabindu Lakkaraju, Julius Adebayo, and Prof. Sameer Singh, NeurIPS

2020 Tutorial, 2020.
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In Chapter 4, we describe the results of the empirical assessment of various post hoc

explanation methods. The material is derived from:

• Assessing the trustworthiness of saliency maps for localizing abnormalities

in medical imaging , Nishanth Arun, Nathan Gaw, Praveer Singh, Ken Chang,

Mehak Aggarwal, Bryan Chen, Katharina Hoebel, Sharut Gupta, Mishka Gidwani,

Julius Adebayo, Matthew Li, Jayashree Kalpathy-Cramer, Radiology: Artificial

Intelligence, 3 (6): 2021.

• Debugging Tests for Model Explanations, Julius Adebayo, Michael Muelly,

Ilaria Liccardi, Been Kim, Advances in Neural Information Processing Systems

(NeuRIPs), 2020..

• Post hoc explanations may be ineffective for detecting unknown spurious

signals, Julius Adebayo, Michael Muelly, Hal Abelson, Been Kim, International

Conference on Learning Representations (ICLR), 2022.

In Chapter 5 we present the model guiding formulation along with demonstration of

the approach’s effectiveness for detecting noisy training labels and spurious signals. The

discussion is based on:

• Guiding Models with Expert Annotations, Julius Adebayo, and Hal Abelson,

Presented at XAI Debugging Workshop, Neurips 2021, & Princeton Symposium on

Interpretability in Machine Learning; Conference version to be submitted.

In Chapter 6 we discuss the second model debuging tool for identifying mislabelled

training points that have the most effect on a downstream disparity metric of interest. The

discussion is based on:

• From Label Quality to Model Fairness: Quantifying the sensitivity of model

disparity metrics to label errors; Julius Adebayo, Melissa Hall, Bowen Yu, &

Bobbie Chern. Submitted & Under Review.

In Chapter 7 we conclude the thesis.
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Chapter 2

Model Debugging

2.1 Overview

In this section, we motivate why model debugging operationalizes model understanding. We

then move to discuss various definitions of model bugs. We categorize model bugs into two:

those that occur during the learning phase, and those that occur after a model has been

trained—the prediction phase. In this work, we focus primarily on the later. With a general

overview of model bugs established, we then discuss the two key model bugs that we focus on

in this thesis: spurious correlation bugs, and noisy training label bugs. We end the chapter

with a discussion of related work.

2.2 Model Debugging as Model Understanding

An oft-lamented issue in research on explainable machine learning is the claim that there is

no clear definition of explainability. Doshi-Velez et al. [2017] take a stab with the claim that,

to interpret means “to present in understandable terms to a human." Another definition

operationalizes ML explainability as the ability to better simulate the output of an ML model

on new examples [Lipton, 2018]. Regardless of a definition, the goal of explainability is to

improve an end-user’s—human interacting with a model—understanding of a model. In this

thesis, we take the view that debugging and understanding are intertwined.

What does it mean to understand a system? In a now celebrated paper titled

“Could a Neuroscientist Understand a Microprocessor”, Jonas and Kording [2017] advanced

the thesis that an individual understands a system if the person can:
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repair a broken implementation of the system.

Stated differently, if one can both detect that a system is broken, diagnose the cause of the

malfunction, and then repair the system, then one understands the system.

In their paper, Jonas and Kording [2017] applied state-of-the-art analysis techniques, in

neuroscience, to input-output data from a well understood system: a micro-processor. Their

hypothesis was that analysis tools in neuroscience were being used to make claims about

the functioning of various components of the brain using input-output data. However, the

insights obtained from such analyses were often difficult to assess because the true function

of the different parts of the brain is not known a priori, and the interventional experiments

needed to verify the results of an analysis are typically not obvious. To circumvent the

challenge, Jonas and Kording [2017] turn to the tactic of applying an analyses tool to a

well-understood toy setting. If an analysis tool can recover the behavior and functioning of a

well-understood system, then it might hold hope for recovering the behavior of an unknown

complex system.

Why does ‘repairing’ a system imply ‘understanding’ the system. When a complex

system fails, it is either because:

1. a component of the system has failed or

2. an interconnection between components of the system failed.

This immediately suggests a way to fix/repair a broken system:

1. examine each component of the system to ensure that they are working as expected, or

2. examine the interconnection between components to ensure that these are still func-

tioning.

The requirements above necessitate:

1. knowing the constituent components of a complex system as well as the normal

functioning behavior, and

2. knowing how the components of a complex system are connected.

Consequently, to debug a system, the operator needs to know the proper functioning

behavior of each system component and how these components combine to form the larger
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system. We argue that this level of knowledge constitutes understanding the system. Because

of this simple underlying reasoning, we claim that debugging operationalizes understanding.

The claim that the ability to debug a system is equivalent to understanding the system is

not new. Jonas and Kording [2017]’s definition was inspired by an earlier paper by Lazebnik

[2002] titled, “Can a biologist fix a radio?", where the author argued for an engineering

approach to conducting research in molecular biology. In computer science and software

engineering, the task of fixing a broken implementation of a software system is known as

debugging. Much has been written on how to go about debugging a software system, and the

critical link between understanding the software system and the ability required to debug the

system. Inspired by Jonas and Kording [2017], and the critical importance that debugging

plays in traditional software, in this thesis, we make debugging the center piece of our focus.

An objection? A potential objection to the claim that model understanding is equivalent

to model debugging might be that there are strategies that can be used to repair a system but

that donot require understanding. For example, turning a device off and on can sometimes

return the system to normal behavior—a fix that does not require understanding the system.

First, we contend that the on/off strategy is not reliable, and will often fail to stem breakdowns

in the future. Second, understanding comes in different forms. Famously, Marr [1982] posited

that understanding of a system can be achieved at various levels: 1) the algorithmic, 2)

the computational, and 3) the implementational. Even at each level, understanding lies on

a spectrum. Overall, we see model debugging as a way to more concretely verify that an

individual understands a model.

In this thesis, we focus on debugging machine learning models after they

have been trained. Translating the challenge of debugging to the machine learning setting

results in different categories of bugs—a notion we will make more precise shortly. A first

category of bug are those due to software implementation errors. These kind of bugs

are the standard type of bugs encountered in traditional software engineering like: type

mismatch errors, out-of-memory errors, performance errors, or even errors that stem from

incorrect implementation of an algorithm. This thesis does not focus on standard software

implementation bugs since it is more well-studied, and there exists tools to better address

them [Naik and Tripathy, 2008].

A second kind of bug are learning phase model bugs. These are the kind of bugs that

‘prevent’ a model from being trained, i.e., the training loss is not successfully minimized.
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As an example, a learning phase bug would prevent a simple LeNet model from getting

above 70 percent training accuracy on the MNIST digit recognition dataset. Despite their

importance, this thesis does not focus on these kind of model bugs. Bugs that occur in the

learning phase [Schneider et al., 2021, Tobin et al., 2019] essentially deter any concrete model

from being learned in the first place, so a significant amount of research in optimization,

model architecture development, and other research areas have directly contributed to

stemming learning phase bugs. For example, innovations like the ReLU non-linearity [Nair

and Hinton, 2010], residual connections [He et al., 2016], BatchNorm [Ioffe and Szegedy,

2015], LayerNorm [Ba et al., 2016], and the Adam optimizer [Kingma and Ba, 2014] were all

discovered with the goal of successfully sidestepping learning phase model bugs. To a large

extent, the success of the deep learning paradigm can be credited to the tremendous amount

of effort that went into discovering new insights that make DNNs more easily trainable, i.e.,

sidestep learning phase model bugs.

In this thesis we focus primarily on a third kind of model bug: prediction/inference model

bugs—a notion we will make more concrete in the next section. We do this because these

kind of model bugs are less well-understood, and no clear recipe currently exists to address

them. Increasingly, tools that claim to explain an already trained model are being used for

model debugging with mixed success [Chen et al., 2021]. In the next section, we discuss our

proposed categorization of model bugs in greater detail.

2.3 A Categorization of Model Bugs in Supervised Learning

A model bug is a ‘contamination’ in the learning, and/or prediction pipeline that causes a

model to produce incorrect predictions. We will concretize this definition shortly; however, we

note that, in this thesis, we focus primarily on the supervised learning paradigm. Specifically,

given a model class (e.g. deep neural networks (DNNs)), empirical risk minimization (ERM)

involves minimizing a loss function, evaluated on a distribution that places a point mass on

each training sample, in order to obtain a single model, from the pre-specified model class,

that should perform well on unseen examples.

ERM Notation. In standard supervised learning, we are usually given input-label pairs,

{(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1, where 𝑥 ∈ 𝒳 and 𝑦 ∈ 𝒴, and seek to learn a model—a function— 𝑓𝜃 : 𝒳 → 𝒴.

The model, 𝑓𝜃, is then used to provide predictions on test examples, 𝑥test ∈ 𝒳 , as 𝑦test =
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𝑓𝜃(𝑥test).

ERM & The two phases of Supervised ML. The dominant learning paradigm in

supervised learning is empirical risk minimization (ERM). Equation 2.1 shows the components

of ERM. In general, the supervised ML process can be partitioned into: 1) the learning (or

training) phase, and 2) the prediction phase.

The learning phase corresponds to solving the ERM problem to obtain a trained model.

Once the training objective, loss, has been successfully minimized, we obtain a model, 𝑓𝜃

that can then be used to predict labels for new instances—the prediction phase.

Learning Phase: argmin
𝜃⏟ ⏞ 

Model

1

𝑛

𝑛∑︁
𝑖=1

ℓ(

Training Data⏞  ⏟  
(𝑥train, 𝑦train); 𝜃). (2.1)

Prediction Phase: 𝑦test = 𝑓𝜃(
Test-data⏞ ⏟ 
𝑥test ) (2.2)

We classify model bugs into two: learning phase model bugs, and prediction phase model

bugs based on which stage of the process the bug occurs in. Before we go into further

detail about model bugs, and give a more concrete definition, we first walk through the

supervised ML pipeline to categorize its constituent components as well as which phase these

components affect.

Components of a typical supervised ML Pipeline. To successfully detect and fix

mistakes that occur in a complex system, the core constituent parts of the system and their

associated function need to be known—even if at a high level. This is because when an error

occurs, the cause of the error will be attributed to one or more of these constituent parts.

Turning to the ML setting, we also need to take stock of the constituent parts of the pipeline.

Using the DNN training process as an example, the key constituent parts of the standard

supervised learning process are:

• (Learning & Prediction Phase) The model & its initialization: this component

includes the type of function class selected, e.g. DNN, linear model, decision tree etc.
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For a model class like DNN, it further includes components like dropout, choice of

activation function, batchnorm, and other details like whether the architecture is a

transformer or a convolutional neural network (CNN). In general, all the choices that

go into specifying the model and its initialization fall under this component;

• (Learning Phase) Optimizer: this broadly includes the choice of the optimization

algorithm, the learning rate schedule, and the hyper-parameters used by the optimizer;

• (Learning & Prediction Phase) Data: training data, validation data, test data, as well

as the data augmentation and normalization strategies; and

• (Learning Phase) Loss function & regularizer: this is the ERM objective that is

minimized. Common choices include the cross-entropy loss, squared loss, and hinge

loss.

With the components of a supervised ML pipeline now denominated, we will now define a

model bug.

A more concrete definition of a Model Bug. We say a model bug has occurred when

a model’s output, on a sample, differs from the ‘true’ label of that sample by more than a

user-defined tolerance.

Model Bug: Given a tolerance parameter, 𝜏 ≥ 0, a sample, 𝑥𝑘, whose true label is 𝑦𝑘, a

model bug occurs when: ‖𝑓𝜃(𝑥𝑘)− 𝑦𝑘‖𝑝 ≥ 𝜏 .

In the model bug definition, the condition that triggers a bug (or error) is the relationship:

‖𝑓𝜃(𝑥𝑘)− 𝑦𝑘‖𝑝 ≥ 𝜏 . The tolerance, 𝜏 , and the choice of the norm, ‖.‖𝑝, are user provided

parameters. The choice of the tolerance and norm allows the user to specify how much wiggle

room can tolerated before a bug is triggered.

On the basis of these distinct phases of supervised ML, we can classify bugs into:

1. Learning Phase Model Bugs: these are model bugs that occur during the learning

phase. Overall, these bugs usually manifest themselves by increasing the difficulty of

learning an ML model that has low error.

2. Prediction/Inference Phase Model Bugs: These are bugs that manifest themselves

after a model has been trained.
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Variations on the definition of a Model Bug. We defined a model bug in terms of a

single example, and the difference between the model output and its prediction. However,

the definition can also be extended to sets of examples and other functions of a model’s

parameters. Let, 𝑆𝑚, be a set of 𝑚 inputs written in matrix form as 𝑋𝑚 ∈ R𝑚×𝑑. The

matrix, 𝑋𝑚, has each sample in the set 𝑆𝑚. Let the vector of true labels be ym ∈ R𝑚. A

version of the model bug definition for a the set of inputs, 𝑆𝑚 is then:

Model Bug (Set Definition) : Given a tolerance parameter, 𝜏 ≥ 0, a matrix, 𝑋𝑚, whose

true label vector is ym, a model bug occurs when:

‖𝑓𝜃(𝑋𝑚)− ym‖𝑝 ≥ 𝜏 .

The proposed definition of a model bug is flexible, and can be used to even capture

notions of “fairness” or bias. For example, if the set 𝑆𝑚 were to be the a selection of houses

that belong to a zipcode that has a high concentration of a particular ethnic group, then the

definition above corresponds to a fairness violation of the model.

2.3.1 Prediction Phase Model Bugs

In this subsection, we discuss the two primary prediction phase bugs that we focus on in this

thesis: spurious correlation bug and the noisy training label bug.

Bug Class Specific Examples Formalization
Prediction Phase Spurious Correlation argmin

𝜃
𝐿(𝑋spurious artifact, 𝑌train; 𝜃)

Prediction Phase Labelling Errors argmin
𝜃

𝐿(𝑋train, 𝑌wrong label; 𝜃)

Prediction Phase Initialized Weights 𝑓𝜃init(𝑥test)
Prediction Phase Frozen Layers argmin

𝜃frozen
𝐿(𝑋train, 𝑌wrong label; 𝜃)

Prediction Phase Out of Distribution (OOD) 𝑓𝜃(𝑥OOD)
Prediction Phase Pre-Processing Mismatch (PM) 𝑓𝜃(𝑥PM)
Prediction Phase Test Adversarial Examples (Adv) 𝑓𝜃(𝑥Adv)

Table 2.1: Table of different bugs. We show different examples of bugs under the different
contamination classes: data, model and test-time. We also formalize these bugs for the
traditional supervised learning setting.

What is a spurious signal? A spurious signal is a feature/concept whose correlation

with the label/output changes, widely, from one domain to another [Arjovsky et al., 2019].

To make this intuition more concrete, we specify some notation.
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Notation. Let’s assume that we are given data from two domains: 𝒟1: {(𝑥𝑖,𝑑1 , 𝑦𝑖,𝑑1)}𝑛𝑖=1,

and 𝒟2: {(𝑥𝑖,𝑑2 , 𝑦𝑖,𝑑2)}𝑚𝑖=1, consisting of 𝑛, and 𝑚 samples respectively. As usual, the goal

here is to learn a classifier, 𝑓𝜃, that maps from inputs, 𝑥𝑖 ∈ R𝑑, to a labels, 𝑦𝑖 ∈ R. We assume

that this classifier can be written as: 𝑓𝜃(𝑥𝑖) = ℎ(𝑔(𝑥𝑖)), where the function, 𝑔 : 𝑥𝑖 → 𝑧𝑖, is an

encoder that maps an input to a latent vector, 𝑧𝑖 ∈ R𝑘. The function, ℎ, is then a simple

classifier on top of the latent code, and maps the latent code to a label. To ground the setup,

we can think of the task as detecting the presence of pneumonia in a chest radiograph. The

first domain, 𝒟1, represents data from hospital 1, while the second domain, 𝒟2, represents

data from hospital 2. Each component of the latent code, 𝑧𝑖, represents a higher level

concept. For example, the first dimension can correspond to a concept that indicates whether

a hospital tag is present in the radiograph. We’ll term the matrix, Z1 ∈ R𝑛×𝑘, to be the

matrix of the latent code for all inputs in the first domain 𝒟1, while Z2 ∈ R𝑚×𝑘 will be the

matrix of the latent code for all inputs in the second domain. Each column of a latent code

matrix, for a domain, is a feature/concept vector. We can also index each column to refer

to a particular concept vector, so 𝑧2𝑗 is the jth column from the matrix Z2. With critical

notation now out of the way, we can now define a spurious signal.

Spurious Signal: Given a tolerance parameter, 𝜏 ≥ 0, classifier 𝑓1 : 𝑥𝑖,𝑑1 → 𝑦𝑖,𝑑1 , trained

on data from the first domain, 𝒟1, another classifier 𝑓2 : 𝑥𝑖,𝑑2 → 𝑦𝑖,𝑑2 trained on data from

the second domain, 𝒟2, so that Z1 ∈ R𝑚×𝑘 is the latent code for inputs in the first domain,

and Z2 ∈ R𝑛×𝑘 is the latent code for inputs in the second domain, a concept 𝑧𝑗 is spurious if:

‖corr
(︀
𝑧1𝑗 ,y𝑑1

)︀
− corr

(︀
𝑧2𝑗 ,y𝑑2

)︀
‖𝑝 ≥ 𝜏.

In the definition above, y𝑑1 and y𝑑2 are the vectors of the labels from 𝒟1, and 𝒟2

respectfully. The function, corr, refers to correlation, so corr
(︁
𝑍1
𝑗 ,y𝑑1

)︁
is the correlation

coefficient between the 𝑗th latent concept for the classifier, 𝑓1, learnt on domain 1 and its

labels, y𝑑1 .

The spurious signal definition compares the strength of a signal’s correlation with the

label in two domains. If a concept/features’s association with the label is stable across

domains then it will enable high performance; however, an unstable correlation indicates

that a model will underperform in a domain where the strength of that feature/concept’s

correlation with the label is not high.

The proposed definition of a spurious signal relies on the strength of associations across
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domains. There are other alternative definitions that one could pose. For example, another

definition of a spurious concept would be a concept that is not ‘causally’ related to the

outcome. However, such a definition is difficult to operationalize for multiple reasons. First,

predictive models trained via ERM typically don’t capture any notion of causality or the

underlying data generating mechanism, so it is unclear why such models should be expected

to capture causal concepts. If the underlying causal generative model of the task at hand

is known, then a causal definition might be feasible. However, we focus on settings where

such causal knowledge is unknown. Another definition of a spurious signal might require

that the high level concept linearly separate the input data. The proposed definition is

a strictly weaker version of that requirement. Ultimately, the proposed definition is not

a panacea; however, we have chosen this definition in this thesis because it is amenable

operationalization.

Spurious Correlation Bug: A spurious correlation bug is a model bug that is induced

by a spurious signal.

With the definition of a spurious correlation now established, a spurious correlation bug

is simply a model bug for which the cause of the bug is a spurious correlation signal.

Knowledge of the Spurious Signal. In practice, when a model is being tested, it is not

often clear whether the model is relying on a spurious signal as primary basis for its output.

In addition, even if a model is suspected to be relying on spurious signal, the exact form

that the signal takes is usually unclear.

1. Known Spurious Signal: corresponds to the setting where the potential spurious

signal is known ahead of time by the individual seeking to assess the reliability of a

trained model.

2. Unknown Spurious Signal: corresponds to the setting where the, specific, potential

spurious bug is not know at test-time to the individual assessing the reliability of the

trained model.

Noisy Training labels. The second key type of model bug that we consider is due to errors

in the training labels. Errors in training labels for a particular group in the training data

limit the ability of the model to learn the right associations for that group, and consequently
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induces the trained model to make more errors on new inputs that belong to the group with

high label error.

Noisy Training Label Bug: A noisy training label bug is a model bug that is induced

due to the presence of a wrong labels in the training set.

Errors due to noisy training labels manifest themselves as regular model bugs whose

cause is due to a noisy data collection process. Consequently, identifying training points

whose labels might be wrong, and correcting these labels will stem noisy training label bugs.

2.4 Related Work

The goal of debugging machine learning models has been a long-standing one in the machine

learning community [Kulesza et al., 2015, Sculley et al., 2015, Tobin et al., 2019], so it’ll be

impossible to completely cover all relevant literature. For example, one could argue that

traditional regression diagnostics [Fox, 2019] like the Cook’s distance [Cook and Weisberg,

1982] are aimed at assessing model reliability. However, in this section, we focus on those

that are directly relevant to the discussion in this Chapter.

The model bug classification discussed in this chapter takes its naming from Schneider

et al. [2021]’s work, where they introduce a tool, cockpit, for identifying and fixing bugs in the

learning phase. Different from their discussion, we focus on the prediction phase. In addition,

other work have also introduced a taxonomy of ways in which a model or an AI agent can be

derailed [Amodei et al., 2016]. In practice, the niche of machine learning engineering focused

on testing/auditing an ML model is now known as ML monitoring [Bacelar, 2021]. As at the

writing of this dissertation, the ML monitoring field is still in its infancy, so model debugging

guidelines are still emerging.

More recently, Cadamuro et al. [2016] and Bhadra and Hein [2015] tackled the challenge

of debugging least squares models. Similarly, Lourenço et al. [2019] studied the problem of

detecting mislabelled examples. Augenstein et al. [2019] studied the problem of performing

model debugging in a federated learning setting, and gave a comprehensive list of model

bugs that are often encountered in practice.
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Chapter 3

Post hoc Explanation Methods

3.1 Overview

In the first part of this thesis we evaluate three kinds of post hoc model explanation methods

to see if they are effective for model debugging. In this chapter, we provide a discussion

of each kind of explanation considered. First we discuss feature attribution methods in

Section 3.2, and then move to concept activation approaches. The third kind of method

we consider is an approach that ranks the training points by influence on the loss on a

test example: influence functions. We present a detailed but non-rigorous derivation of the

influence functions approach since we’ll modify the approach in Chapter 6 to help identify

mislabelled inputs that cause a fairness violation. To further ground the reader, we provide

a brief overview of how each of these methods is actually used in practice.

3.2 Feature Attribution Methods

In this section, we will provide an overview of the feature attribution methods that we

consider in this work. First, we set the stage with some notation. We consider classification

problems, i.e, settings where the task is to learn a mapping, 𝑓𝜃 : 𝒳 → 𝒴, where 𝒳 ∈ R𝑑 is

the feature space, and 𝒴 ∈ R𝑐 is the output space. Here, 𝑐 is the number of output classes.

We assume that we are given a training set: {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1 of 𝑛 examples. Here, we term the

tuple (𝑥𝑖, 𝑦𝑖), 𝑧𝑖, which means the 𝑛 training points can be written as: {𝑧𝑖}𝑛𝑖=1. Throughout

this section, we will only consider learning via empirical risk minimization (ERM), which

corresponds to: 𝜃 := argmin𝜃∈Θ
1
𝑛

∑︀𝑛
𝑖 ℓ(𝑧𝑖, 𝜃). Note that we write 𝑓𝜃,𝑖 to indicate the 𝑖th
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dimension of the output. We will also assume that 𝑓𝜃,𝑖 is the output of the model without

the softmax normalization.

Feature Attributions: In this thesis, we define a feature attribution method to be a

method that takes as input: a trained model, a single input, and the model’s output on

that instance to produce a scalar relevance score for each dimension of input. The scalar

relevance score can then be interpreted as the importance of that input dimension towards

the model’s output decision on the specific input.

In general, the sum of the relevance scores for all input dimensions should equal the

model’s output on the input. However, some of the methods we call feature attribution

methods do not satisfy this requirement. When the input modality is the an image or text,

the relevance score can then be visualized in the form of a heatmap (as shown in Figure 3-1).

The methods discussed here are also often called saliency maps or just heatmaps in the

literature.
Figure 2: Alternative

Modified BackProp
Surrogate 

ApproachesGradient & Variants

Figure 3-1: The Figure shows feature attributions for two inputs for a CNN model trained
to distinguish between birds and dogs.

A Definition: A feature attribution functional, 𝐸 : 𝑓𝜃 × R𝑑 × R → R𝑑, maps the input,

𝑥𝑖 ∈ R𝑑, the model, 𝑓𝜃, output, 𝑓𝜃,𝑖(𝑥𝑖), to an attribution map, 𝑀𝑥𝑖 ∈ R𝑑. Note that 𝑓𝜃,𝑖(𝑥𝑖)

is the 𝑖th dimension of the model’s output vector on the input 𝑥𝑖.

The landscape of model attribution methods is vast, so we focus on a subset here. We

will first begin with methods that are based on the derivative an output scalar with respect

to the input.

The Gradient (Grad) [Baehrens et al., 2010, Simonyan et al., 2014] feature attribution

map is obtained as 𝑀grad(𝑥𝑖) = |∇𝑥𝑖𝑓𝜃,𝑖(𝑥𝑖)|. This is the derivative of the 𝑖th dimension

of the model’s output with respect to the input. The output of this approach is a vector

that is the same size as the input. The Gradient map is a key primitive of local post hoc

explanation methods, and it is often a precursor in other approaches.
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SmoothGrad (SGrad) [Smilkov et al., 2017], is computed as 𝑀sg(𝑥𝑖) =
1
𝑁

∑︀𝑁
𝑖=1∇𝑥𝑖𝑓𝜃,𝑖(𝑥𝑖+

𝑛𝑖) where 𝑛𝑖 is sampled according to a random Gaussian noise.

SmoothGrad Squared (SGradSQ) [Hooker et al., 2019] is the element-wise square of

SmoothGrad: 𝑀SGradSQ(𝑥𝑖) = 𝑀sg(𝑥𝑖)⊙𝑀sg(𝑥𝑖).

VarGrad (VGrad) [Adebayo et al., 2018a] is the variance analogue of SmoothGrad:

𝑀VGrad(𝑥𝑖) = V[𝑀grad(𝑥𝑖 + 𝑛𝑖)], where V is the variance operator, and 𝑛𝑖 is sampled

according to a random Gaussian noise.

Input-Grad [Shrikumar et al., 2016] is the element-wise product of the gradient and

input |∇𝑥𝑖𝑓𝜃,𝑖(𝑥𝑖)| ⊙ 𝑥𝑖. Several other methods have been shown to be equivalent to this

product. For example, for a DNN with all ReLU activations, LRP-Z, a variant of layer-wise

relevance propagation that will discuss shortly, in the modified back-propagation section, is

equivalent to Input-Grad [Kindermans et al., 2016].

Integrated Gradients (IntGrad) [Sundararajan et al., 2017] sums gradients along

an interpolation path from a “baseline”/null, �̄�, to original input𝑥𝑖. The formulation is:

𝑀IntGrad(𝑥𝑖) = (𝑥𝑖 − �̄�)×
∫︀ 1
0

𝜕𝑓𝜃,𝑖(�̄�+𝛼(𝑥𝑖−�̄�))
𝜕𝑥𝑖

𝑑𝛼.

Expected Gradients (EGrad) [Erion et al., 2019] computes IntGrad but with a

baseline input that is an expectation over the training set:

𝑥𝑖: 𝑀EGrad(𝑥𝑖) =
∫︀
𝑥′

(︁
(𝑥𝑖 − �̄�)×

∫︀ 1
0

𝜕𝑓𝜃,𝑖(�̄�+𝛼(𝑥𝑖−�̄�))
𝜕𝑥𝑖

𝑑𝛼
)︁
𝑝𝐷(𝑥

′)𝑑𝑥′.

Feature attribution methods that modified/post-process back-propagation. Next

we discuss gradient-based feature attribution methods that modify the back-propagation

procedure in various ways. Recall that several of the approaches described above can be

obtained via simple gradient calls in an automatic differentiation package. The next set of

approaches we discuss modify that routine. As we will see in the empirical evaluation, even

though the modification is slight, it often leads to dramatic differences in the output visual

quality.

Deconvnet [Zeiler and Fergus, 2014] & Guided Backpropagation (GBP) [Sprin-

genberg et al., 2014] both modify the backpropagation process at ReLu units in DNNs.

Let, 𝑎 = max(0, 𝑏), then for a backward pass, 𝜕𝑙
𝜕𝑠 = 1𝑠>0

𝜕𝑙
𝜕𝑏 , where 𝑙 is a function of 𝑠. For

Deconvnet, we have that 𝜕𝑙
𝜕𝑠 = 1 𝜕𝑙

𝜕𝑠
>0

𝜕𝑙
𝜕𝑏 , and for GBP, we have 𝜕𝑙

𝜕𝑠 = 1𝑠>01 𝜕𝑙
𝜕𝑠

>0
𝜕𝑙
𝜕𝑏 .

PatternNet & Pattern Attribution, [Kindermans et al., 2018]. PatternNet and

Pattern Attribution first estimate a ‘signal’ vector from the input, 𝑥𝑖; then, the attribution
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(in the case of Pattern Attribution) corresponds to the covariance between the estimated

signal vector, and the output, 𝑓𝜃,𝑖(𝑥𝑖), propagated all the way to the input.

DeepTaylor [Montavon et al., 2017]. DeepTaylor describes a family of methods

that iteratively compute local Taylor approximations for each output unit in a DNN. These

approximations produce unit attribution that are then propagated and redistributed all the

way to the input.

Layer-wise Relevance Propagation (LRP) & Variants, [Alber et al., 2018, Bach

et al., 2015]. LRP attribution methods iteratively estimate the relevance of each unit of

a DNN starting from the penultimate layer all the way to the input in a message-passing

manner. We consider 4 variants of the LRP method that correspond to different rules for

propagating unit relevance.

We will now consider methods that approximate a model around a single input with

linear models in order to explain the model’s output on that input.

LIME [Ribeiro et al., 2016] locally approximates 𝑓𝜃,𝑖 around 𝑥𝑖 with a simple function,

𝑔. LIME corresponds to: argmin𝑔∈𝐺 𝐿(𝑓, 𝑔,pert(𝑥𝑖)) + Ω(𝑔), where pert(𝑥𝑖) are local

perturbations of the input 𝑥𝑖, and Ω(𝑔) is a regularizer.

SHAP [Lundberg and Lee, 2017] Similar to LIME, SHAP provides an approximation to

the Shapley value [Shapley, 1988] to explain a model’s output. The shapley value provides a

way to allocate ‘value’ amongst a group of players in a cooperative game setting. In the model

explanation interpretation, the dimensions of the input are the players in the game, and

the relevance score of each dimension of the input is the payoff for that player. The SHAP

approach provides a tractable approximation to computing the shapley value. Under certain

regularity conditions, the relevance scores produced by SHAP and LIME are equivalent.

We now end the discussion on feature attribution approaches.

3.3 Concept Activation Methods

In this section, we switch to concept activation approaches. These are approaches that measure

the sensitivity of a model output (or unit in the model) to a user defined concept [Bau et al.,

2017, Kim et al., 2018]. In the previous section, we considered the influence of dimensions of

the input on the output. However, one might interested in understanding whether the model

has learned higher level concepts that cannot be simply derived from the input. We center
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SmoothGrad

Integrated

Gradients

Guided

BackProp

A: Feature Attribution Methods C: Concept Importance Ranking (TCAV) B: Clinically Relevant Concepts

D: Influential Training Points

Figure 3-2: A: Here we show 5 different inputs, one for each bone age category, and the
corresponding Gradient feature attribution map. We refer to the Appendix for an equivalent
visualization for other feature attribution methods considered. We test three additional
feature attribution methods: SmoothGrad, Integrated Gradients, and Guided BackProp.
B&C:Concept Importance Methods for a Normal (non-spurious) model. Here we show the
TCAV score for all clinical concepts as well as the spurious concepts for a normal model that
was confirmed to not rely on the spurious signals. D:Top ranked influential examples for a
test pre-puberty input on a normal model.

our discussion primarily on the TCAV approach of Kim et al. [2018].

Concept activation approaches quantify the sensitivity of a DNN’s output score to user

provided inputs that represent a concept of interest. For example, one might want to know

whether a model trained to do object and animal recognition relies on the presence of stripes

to detect whether there is a Zebra in the image.

Given hidden representations, ℎ𝑙, from a particular layer of a DNN for for images belonging

to concept class 𝐶. We can derive the sensitivity score as: ∇ℎ𝑙,𝑘(𝑓𝑙(𝑥)).𝜃
𝑙
𝑐. The previous

expression indicates the sensitivity of the class score (logit) for class 𝑘 to inputs indicating

concept, 𝐶, given hidden representations from layer 𝑙 from the DNN 𝑓 . The concept vector,

𝜃𝑙𝑐, typically corresponds to a the weights of a linear classifier trained to separate the images

for a particular concept class from or images.

3.4 Training Point Ranking

The final kind of interpretation that we consider is training point ranking via influence

functions. In the case of training point ranking via influence functions, we rank the training

samples, in terms of ‘influence’, on the loss of a test example. Specifically, if we up-weighted

a training point and retrained the model, then by how much would the loss on a given

test example change? Koh and Liang [2017] analytically derive the analytically formulas
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for computing this quantity. We provide a detailed, but non-rigourous derivation of these

formulas here. In Chapter 6, we will modify these formulas to identify fairness violations.

Updated Notation We consider prediction problems, i.e, settings where the task is to

learn a mapping, 𝜃 : 𝒳 → 𝒴, where 𝒳 ∈ R𝑑 is the feature space, and 𝒴 ∈ {0, 1} is the

output space. We term the tuple, (𝑥𝑖, 𝑦𝑖), 𝑧𝑖, which means the 𝑛 training points can be

written as: {𝑧𝑖}𝑛𝑖=1. Throughout this section, we will only consider learning via empirical risk

minimization (ERM), which corresponds to: 𝜃 := argmin𝜃∈Θ
1
𝑛

∑︀𝑛
𝑖 ℓ(𝑧𝑖, 𝜃). Similar to Koh

and Liang [2017], we will assume that the ERM objective is twice-differentiable and strictly

convex in the parameters. We focus on binary classification tasks, however, our analysis can

be easily generalized.

Upweighting a training point Let 𝜃−𝑧𝑖 be the ERM solution when a model is trained

on all data points except the training point 𝑧𝑖. The influence, ℐup,params, of datapoint, 𝑧𝑖, is

then defined as the change: 𝜃−𝑧𝑖 − 𝜃.

We can define the empirical risk as:

𝑅(𝜃)
def
=

1

𝑛

𝑛∑︁
𝑖=1

ℓ(𝑧𝑖, 𝜃).

Since we assumed that the ERM solution is twice-differentiable and strictly convex in

the parameters, we can specify the hessian as:

𝐻𝜃

def
=

1

𝑛

𝑛∑︁
𝑖=1

∇2
𝜃ℓ(𝑧𝑖, 𝜃) = ∇2𝑅(𝜃)

To start, let:

𝜃𝜖, 𝑧𝑖 = argmin
𝜃∈Θ

𝑅(𝜃) + 𝜖ℓ(𝑧𝑖, 𝜃).

Then we can define the parameter change to be: ∆𝜖 = 𝜃𝜖, 𝑧𝑖 − 𝜃. Since 𝜃 does not depend

on 𝜖, we have that:
𝑑𝜃𝜖, 𝑧𝑖
𝑑𝜖

=
𝑑∆𝜖

𝑑𝜖
.

We know that 𝜃𝜖, 𝑧𝑖 is a solution, i.e., minimizer, so we will form the first-order optimality

conditions and form a Taylor expansion of that expression.

To do this we have that:
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∇𝜃(𝑅(𝜃) + 𝜖ℓ(𝑧𝑖, 𝜃)) = 0,

∇𝑅(𝜃) + 𝜖∇ℓ(𝑧𝑖, 𝜃) = 0.

The Taylor expansion of the above expression is then:

[∇(𝑅(𝜃) + 𝜖∇ℓ(𝑧𝑖, 𝜃)] + [∇2(𝑅(𝜃) + 𝜖∇2ℓ(𝑧𝑖, 𝜃)∆𝜖] ≈ 0.

Above, we only keep the first two terms of the Taylor Expansion.

We will now solve for ∆𝜖 in the above equation and then differentiate by 𝜖 to obtain the

final expression.

Solving for ∆𝜖, results in:

∆𝜖 ≈ −[∇2(𝑅(𝜃) + 𝜖∇2ℓ(𝑧𝑖, 𝜃)]
−1[∇(𝑅(𝜃) + 𝜖∇ℓ(𝑧𝑖, 𝜃)].

If we look at the expression for ∆𝜖, we find that ∇(𝑅(𝜃) is zero, since we know that

𝜃 minimizes the empirical risk 𝑅. In looking at the term [∇2(𝑅(𝜃) + 𝜖∇2ℓ(𝑧𝑖, 𝜃)], we find

that it is equivalent to [𝐻𝜃 + 𝜖∇2ℓ(𝑧𝑖, 𝜃)]. We can further make the assumption that the

contribution of the 𝜖∇2ℓ(𝑧𝑖, 𝜃) term is small, so we have [𝐻𝜃 + 𝜖∇2ℓ(𝑧𝑖, 𝜃)] ≈ 𝐻𝜃.

With the above assumptions and substitutions, we arrive at the new expression for ∆,

which is now:

∆𝜖 ≈ −𝐻−1

𝜃
∇ℓ(𝑧𝑖, 𝜃)𝜖.

Let’s differentiate the above expression by 𝜖, and we have that:

𝑑∆𝜖

𝑑𝜖
= −𝐻−1

𝜃
∇ℓ(𝑧𝑖, 𝜃).

Now recall that:
𝑑𝜃𝜖, 𝑧𝑖
𝑑𝜖

=
𝑑∆𝜖

𝑑𝜖
,

which means:
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𝑑𝜃𝜖, 𝑧𝑖
𝑑𝜖

=
𝑑∆𝜖

𝑑𝜖
= −𝐻−1

𝜃
∇ℓ(𝑧𝑖, 𝜃).

As previously discussed, ℐup,params is defined to be the influence of estimate for training

point 𝑧𝑖, so:

ℐup,params
def
=

𝑑𝜃𝜖, 𝑧𝑖
𝑑𝜖

= −𝐻−1

𝜃
∇ℓ(𝑧𝑖, 𝜃).

As we have seen, we can obtain the influence of a training point on a the loss of a test

simply by applying the chain rule to the loss-derivative quantity of interest. We will now

extend this notion of influence.

Given a closed-form approximation to ℐup,params, we can estimate the influence of a

training point on functions of the parameters. For example, Koh and Liang [2017] show,

using a chain-rule argument, that the influence, ℐup,loss(𝑧𝑖, 𝑧𝑡), of a training point, 𝑧𝑖, on the

test loss for a test example has the following closed-form expression:

ℐup,loss(𝑧𝑖, 𝑧𝑡) def
=

𝑑ℓ(𝑧𝑡, 𝜃𝜖, 𝑧𝑖)

𝑑𝜖

⃒⃒⃒⃒
𝜖=0

= −∇𝜃ℓ(𝑧𝑡, 𝜃)
⊤𝑑𝜃𝜖, 𝑧𝑖

𝑑𝜖

⃒⃒⃒⃒
𝜖=0

,

= −∇𝜃ℓ(𝑧𝑡, 𝜃)
⊤𝐻−1

𝜃
∇𝜃ℓ(𝑧𝑖, 𝜃). (3.1)

As we have seen, we obtain the influence of a training point on a the loss of a test simply

by applying the chain rule to the loss-derivative quantity of interest. We will now extend

this notion of influence.

Perturbing a training point A second notion of influence that Koh and Liang [2017] study

is how perturbing a training point leads to changes in the model parameters. Specifically,

given a training input, 𝑧𝑖, that is a tuple (𝑥𝑖, 𝑦𝑖), then how would the perturbation, 𝑧𝑖 → 𝑧𝑖,𝛿,

which is defined as (𝑥𝑖, 𝑦𝑖) → (𝑥𝑖 + 𝛿, 𝑦𝑖), change the model’s predictions? The key issue

here is how an infinitesimal change in the input example changes the model parameters and
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predictions. Let 𝜃𝜖,𝑧𝑖,𝛿,−𝑧𝑗 be the ERM solution to the following minimization problem:

argmin
𝜃∈Θ

1

𝑛

𝑛∑︁
𝑖=1

ℓ(𝑧𝑖, 𝜃) + 𝜖ℓ(𝑧𝑗,𝛿, 𝜃)− 𝜖ℓ(𝑧𝑗 , 𝜃).

As shown, 𝜃𝜖,𝑧𝑖,𝛿,−𝑧𝑗 is the ERM solution obtained when an infinitesimal mass, 𝜖, is shifted

from 𝑧𝑗 i.e. (𝑥𝑗 , 𝑦𝑗) to 𝑧𝑗,𝛿, i.e. (𝑥𝑗 + 𝛿, 𝑦𝑗). Similarly, Koh and Liang [2017] show that the

closed-form approximation for such training point perturbation on the parameters is:

ℐup,params(𝑧𝑗,𝛿)− ℐup,params(𝑧𝑗) =
𝑑𝜃𝜖,𝑧𝑖,𝛿,−𝑧𝑗

𝑑𝜖

⃒⃒⃒⃒
𝜖=0

,

≈ −𝐻−1

𝜃
[∇𝑥∇𝜃ℓ(𝑧𝑗 , 𝜃)]𝛿. (3.2)

With a closed-form expression for the influence of perturbing a training point, we can also

obtain similar forms for functions of the parameters. Consequently, to obtain the influence

of perturbing a training point on the model’s prediction (i.e. a model with parameters 𝜃),

we differentiate with respect to 𝛿, and apply the chain rule to obtain:

ℐpert,loss(𝑧𝑗 , 𝑧𝑡) def
= ∇𝛿ℓ(𝑧𝑡, 𝜃𝑧𝑗,𝛿,−𝑧𝑗 )

⃒⃒⃒⃒
𝛿=0

≈ −∇𝜃ℓ(𝑧𝑡, 𝜃𝑧𝑗,𝛿,−𝑧𝑗 )
⊤𝐻−1

𝜃
∇𝑥∇𝜃ℓ(𝑧𝑗 , 𝜃). (3.3)

As we see in these previous equations, we now have a closed-form expression for the

influence of a training point on the test-loss of a new example. On inspecting the influence

expressions, we find that they typically involve taking the inverse of a the loss hessian.

However, if a model has millions of parameters, it might not be even possible to form the

hessian, let alone invert it. Hessian-vector products are typically used to speed up the

computation in practice. Other approaches for ranking training inputs that side-step the

need for an inverse hessian include: Representer points [Yeh et al., 2018], and TracIn [Pruthi

et al., 2020]. We will now discuss how the approach is used in practice.
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3.5 How are the approaches used in practice?

In this section, we discuss how each class of approach introduced in the previous section is

used in practice.

Feature Attributions To debug a model, a practitioner inspects, one sample at a time,

the attribution of a collection of inputs. In inspecting these attributions, the practitioner

can then form an hypothesis about the behavior of the model on certain inputs. Using their

prior knowledge of the task, the practitioner can then identify whether the model is relying

on features that it should not or if something else is amiss.

Concept Activation For each concept of interest, the practitioner collects input examples

that indicate the concept. For example, to test a model’s dependence on a hospital tag, we

collect images that all have hospital tags in them. Given this collection of examples, the

TCAV approach can then be used to calculate a score, TCAV score, that corresponds to the

sensitivity of a particular output class to the hospital tag concept.

Training Point Ranking These class of approaches ranks all training points by influence

on the test loss of an input. Qualitatively, if a training point has a high influence on the test

loss of an input, it means that if the model were re-trained without that training point, the

test loss of that test point would change significantly. Intuitively, the most highly ranked

training points for a given test input should also be points for which the model relies on

semantically similar features.
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Chapter 4

Challenges with Model Debugging

Using Post hoc Explanation Methods

In this chapter, we comprehensively assess whether current post hoc explanation approaches

are effective for model debugging. Specifically, we evaluate each explanation type against a

series of model bugs. We ask: can the explanation even detect whether a model bug has

occurred? If the method does not pass this filter, it holds not hope for even helping to fix

the model bug.

Our findings paint a dim picture—current post hoc approaches are mostly ineffective for

detecting model bugs. In the specific settings where they are effective, they are only able to

detective the model bug, but not suggest a possible fix.

First, we ask whether post hoc explanations are able to detect that a model is relying on

spurious signals. Second we consider the noisy training label bug. Third, we induce parameter

contamination in trained models and ask whether feature attributions can distinguish a

normal model from one whose parameters have been contaminated. Fourth, we assess whether

explanations can tip an auditor off that a input, at test-time, is out-of-distribution for the

model. In all the previous settings, we devise an experimental design along with quantitative

metrics to help simulate a model debugging process. However, effectiveness in simulation does

not always translate to the real-world. Consequently, we conduct a large-scale study to assess

whether feature attributions are effective, in the hands of end-users, for the aforementioned

model bugs.

Before we dive into the assessment, in the next section, we provide an overview of the
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results for each assessment type.

4.1 Overview & Summary of Results

Spurious Correlation. In Section 4.2, we assess whether three kinds of explanations—

feature attributions, concept activation methods, and training point ranking approaches—can

help detect whether a model is relying on a spurious signal. We will consider two principal

settings for the spurious signal as follows:

1. Known Spurious Signal. In this setting, the spurious signal is known ahead of time

by the individual seeking to assess the reliability of a trained model. Consequently, the

goal will be to use a post hoc explanation method to test whether the model being

debugged is reliant on the spurious signal of interest.

2. Unknown Spurious Signal: In this setting, the spurious signal is not known to the

individual assessing a model’s reliability, which mimics what is typically encountered

in the real-world.

Based on how current post hoc explanation methods are used, detecting that a model

relies on an unknown signal would require the end-user to either: 1) hypothesize what a set of

possible spurious signal is and test for the model’s explicit dependence on each hypothesized

signal, or 2) inspect explanations of the model being debugged under ‘normal’ conditions—a

notion more concrete later in the chapter. Based on two options available when the spurious

signal is not known, it might be immediately obvious that post hoc explanations are unlikely

to be effective. In the first case, the model auditor has to hope that 1) if the model is relying

on a spurious signal, that spurious signal is in the hypothesized set of signals, or 2) that the

post hoc explanation method being used is not susceptible to false positives, i.e., indicating

that a model is relying on spurious signal when it does not, and lastly, 3) explanations of a

normal input for a defective model should indicate that the model is anomalous. As we will

see, the unknown spurious signal setting proves to be challenging for current methods.

We find that concept methods can indicate a model’s reliance on Tag and Stripe signals

when known. However, the approach struggles to detect Blur signal even when known. As

is the case with feature attributions, when a spurious signal is not explicitly tested for,
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our significance tests indicate that reliance on the signal cannot be detected from other

non-spurious concepts.

Noisy Training Labels. In Section 4.3 we demonstrate that attributions of mislabelled

examples are visually similar to attributions for these same examples but derived from a

model with correct input labels. This result suggests that feature attributions are unlikely to

be effective for detecting mislabelled training examples. On the other hand, recent evidence

has demonstrated that training point ranking based on influence functions is effective at

detecting inputs that are mislabelled [Koh and Liang, 2017].

Out-of-distribution bug (Section 4.5). To assess the ability of feature attributions to

diagnose domain shift, we compare attributions derived, for a given input, from an in-domain

model with those derived from out-of-domain model. For example, we compare the attribution

for an MNIST digit, derived from a model trained on MNIST, to an attribution for the same

digit, but derived from a model trained on Fashion MNIST, ImageNet, and a birds-vs-dogs

model. We find high visual similarity for these attributions, which indicates that feature

attributions are unlikely to be effective for detecting that an input is out-of-distribution for

a model being debugged.

Parameter Contamination: Weight Re-initialization (Section 4.4). Next, we

evaluate bugs related to model parameters. Specifically, we consider the setting where the

weights of a model are accidentally re-initialized prior to prediction [Adebayo et al., 2018b].

We find that modified back-propagation methods like Guided Back-Propapagtion (GBP),

DConvNet, and certain variants of the layer relevance propagation (LRP), including Pattern

Net(PNet) and Pattern Attribution (PAttribution) are invariant to higher layer weights of

DNNs for the ImageNet and MNIST tasks.

User Study. In section 4.6, we discuss a user study conducted to assess whether

practitioners can use current post hoc explanation tools to detect model bugs. In this study,

we consider only feature attribution methods for 6 model bugs. The primary takeaway is

that users rely on a model’s predictions, instead of the explanations, to detect a model bug.

4.2 Challenges with Debugging Reliance on Spurious Signals

In this subsection, we present our experimental design, a suite of metrics for assessing a

post hoc method’s effectiveness, and the class of models considered. We then consider each
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explanation type, in turn, and present results on their effectiveness for detecting a model’s

reliance on spurious signals.

4.2.1 Experimental Design for Spurious Signal Detection

We consider 3 (2 visible and 1 non-visible) kinds of spurious signals (See Figure 4-1):

1. a localized image tag;

2. a distinctive stripped pattern; and

3. Gaussian blur applied to the image background.

The signals are all spatially localized, so we can easily obtain ground-truth expected explana-

tions.

Hospital Tag Stripes BlurOriginal Input

Hand 
Radiograph

Knee 
Xray

Figure 4-1: The various spurious signals considered: A hospital tag, vertical stripes, and
background blur.

To induce reliance on spurious signals, we train models on “contaminated” versions of the

training set. Given input-label pairs, {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖 , where 𝑥𝑖 ∈ 𝒳 and 𝑦𝑖 ∈ 𝒴, we can learn a

classifier, 𝑓𝜃, via empirical risk minimization (ERM) that corresponds to minimizing a loss

function, ℓ: argmin𝜃
∑︀𝑛

𝑖=1 ℓ(𝑥
𝑖, 𝑦𝑖; 𝜃). To contaminate the training set, we apply a spurious

contamination function (SCF) to the training set; SCF : 𝒳 × 𝒴 × 𝒞 → 𝒮, where 𝒞 is the

spurious signal set and 𝒮 is the transformed set. An example of an SCF is a function that

pastes an hospital tag onto the bone age radiographs of all pre-puberty individuals in the

dataset. To derive models reliant on a spurious signal, 𝑐𝑖 ∈ 𝒞, we simply learn a new classifier

via ERM on the modified dataset as follows: argmin𝜃
∑︀𝑛

𝑖=1 ℓ
(︀
SCF(𝑥𝑖, 𝑦𝑖, 𝑐𝑖)

)︀
to obtain 𝜃spu.

Contemporary evidence suggests that this approach produces models that easily latch onto

the spurious signal [Nagarajan et al., 2020].
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We focus on the classification setting, and restrict spurious signals to encode, only, for

a single class—the spurious aligned class. We measure a model’s reliance on the spurious

signal via a score.

Definition 4.2.1. (Spurious Score). Given a spurious signal, 𝑐𝑖, the index of its spurious

aligned class, 𝑗 ∈ [𝑘], a model, 𝜃spu : R𝑑 → R𝑘, where argmax(𝜃spu) indicates the classifier’s

predicted class, we define the spurious score as:

SC𝑐𝑖,𝑗(𝜃spu) := P{𝑥𝑖|𝜃spu(𝑥𝑖) != 𝑗}[argmax(𝜃spu(SCF(𝑥
𝑖, 𝑦𝑖, 𝑐𝑖))) = 𝑗].

Given an input that does not contain the spurious signal, and for which the model’s

prediction is not the spurious aligned class, the model’s spurious score is the probability that

the model assigns the input to the spurious aligned class if the spurious signal is added to

the input.

Model Conditions. We focus our analysis on two model conditions:

1. a ‘normal model’, 𝑓norm, for which we can rule out dependence on any of the spurious

signals tested across all classes on the basis of the spurious score, and

2. a ‘spurious model’, 𝑓spu, for which one of the spurious signals encodes for a particular

output class.

We empirically estimate the spurious score and term models that have a score above 0.85 for

any of the pre-defined signals ‘spurious models’. We term a model ‘normal’ if the spurious

score is below 0.1 across all classes and the 3 pre-defined spurious signals.

Spurious Signal Detection Reliability Measures. Equipped with spurious (𝑓spu) and

normal (𝑓norm) models, we are now able to quantitatively assess the motivating question of

this work. We do this by comparing explanations derived from spurious models, 𝑓spu, to those

derived from normal models (𝑓norm). We can partition the kinds of inputs used for deriving

explanations into two: 1) spurious inputs (𝑥spu)—inputs that include the spurious signal

and 2) normal inputs (𝑥norm)—inputs do not not contain the spurious signal. Comparing

the explanations produced by these two classes of inputs for normal and spurious models, we

derive reliability performance measures.

• Known Spurious Signal Detection Measure (K-SSD) - measures the similarity

of explanations derived from spurious models on spurious inputs to the ground truth
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explanation. The ground truth explanation is one that only assigns relevance to the

spurious signal as explanation of the output of a spurious model on a spurious input. K-

SSD measures method reliability when the spurious signal is known. Given a similarity

metric, 𝑆𝑑, then K-SSD corresponds to: 𝑆𝑑

(︀
E𝑓spu(𝑥spu), 𝑥gt)

)︀
; where E𝑓spu(𝑥spu) are

explanations derived from the spurious model for spurious inputs, and 𝑥gt is the ground

truth explanation. The similarity function, 𝑆𝑑, depends on the type of explanation

considered—we will make our choice of this function concrete shortly.

• Cause-for-Concern Measure (CCM) - measures the similarity of explanations

derived from spurious models for normal inputs to explanations derived from normal

models for normal inputs : 𝑆𝑑

(︀
E𝑓spu(𝑥norm),E𝑓norm(𝑥norm)

)︀
. This measure simulates the

setting where a practitioner does not know the spurious signal, and can only inspect

explanations for inputs without the signal. If this measure is high, then it is unlikely

that such a method alert a practitioner that a spurious model exhibits defects.

• False Alarm Measure (FAM) - measures the similarity of explanations derived

from normal models for spurious inputs to explanations derived from spurious models

for spurious inputs: 𝑆𝑑

(︀
E𝑓norm(𝑥spur),E𝑓spu(𝑥spu)

)︀
. We also introduce a variant of

this measure, FAM-GT, which measures the similarity of a explanations derived from

normal models for spurious inputs to the ground truth explanation of a spurious model

for that spurious input. If this measure is high, then that approach is more likely to

signal to a practitioner that a model is relying on spurious signal when the model does

not.

Metrics for Feature Attribution. For feature attribution methods, we use the

Structural Similarity Index (SSIM). SSIM measures the visual similarity between two images.

Concretely, given a set of normal inputs, we obtain a corresponding spurious set of these

inputs by applying the spurious contamination function, SCF to these inputs. Consequently,

we can then compute the K-SSD, CCM, and FAM metrics given these two sets of inputs

using the SSIM metric.

Metrics for Concept Activation. We measure comparison between two concept

rankings using a Kolmogorov-Smirnoff (KS) test comparing two distributions where the null

hypothesis is that the two distributions are identical; we set significance level to be 0.05.

Metrics for Training Point Ranking. Recently, Hanawa et al. [2020] introduced the
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Identical class metric’ (ICM), which is the fraction of the top training inputs, for a given

test example, that belong to the same class as the true class of the test example in question.

Here we also use the KS test to compare the ICM distributions for two different models and

set the significance level to be 0.05.

Taken together, these measures provide a comprehensive overview of an explanation

method’s performance for detecting spurious signals.

4.2.2 Results for Feature Attributions

In this section, we present results on whether feature attributions are effective for detecting

unknown spurious correlation.

Setup. We consider 3 kinds of spurious signals which we term:

1. Tag for the ‘MGH’ hospital tag added to the pre-puberty class,

2. Stripe for the paired vertical stripped signal, and

3. Blur for the background blur.

Given these signals, we then compute the three performance measures of interest: K-SSD,

CCM, FAM, and FAM-GT. K-SSD indicates a method’s reliability when the spurious signal

is known, CCM when the signal is not known and the practitioner only has access to inputs

that don’t encode the spurious signal. Lastly, FAM and FAM-GT indicates the susceptibility

of a method to false positives. An oft-used heuristic based on prior work [Adebayo et al.,

2020] for interpreting SSIM scores is that SSIM scores 0.2−0.4 indicate weak visual similarity,

0.5−0.7 indicate moderate similarity, and > 0.75 high similarity. This is because two random

images typically have SSIM much less than 0.1. For example, we empirically estimate the

similarity of two random (229 × 229) Gaussian images to be less than 0.00023. Even for

natural images, we still find the SSIM values to be below 0.005, which substantiates the

previous heuristic.

Results. We show performance measures for all the feature attribution methods tested

for the Tag and Blur settings in Table 4.1. For the tag setting, the attribution methods

are indeed able to attribute to the visible spurious signal and the K-SSD measure indicates

this finding with mean scores typically above 0.65 for the bone age setting. Contrary to

previous findings, we find that GBP outperforms other approaches for known spurious signals.
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Alternatively, GBP is more suceptible to false positives based on the FAM and FAM-GT

score. Across all methods, we find that these methods also seem to attribute to the spurious

signal (FAM-GT > 0.4) even when the signal is not being relied on by the model. We observe

similar findings for the strip setting as well across all tasks. The CCM measure further

indicates that these methods do not indicate presence of spurious signals when the signal

is unknown for both the Tag and Stripe signals. This finding, however, reverses for the

non-visible blur spurious signal. Across all measures, we find that all methods struggle to

reliably indicate that spurious models are reliant on the blur signal.

Input

Gradient

SG

IG

GBP

A: Normal Model Spurious Tag Inputs B: Spurious Tag Model on ‘Normal’ Inputs C: Spurious Tag Model on Spurious Tag Inputs

Figure 4-2: Detecting Spurious Tag. Here we show in A) Feature attributions for 5
different inputs across the four feature attribution methods with a normal model but with
spurious Tag inputs; B) Feature attributions on the same 5 inputs as in (A), but without
spurious Tag inputs with a model that has learned a spurious alignment between Pre-Puberty
and Tag; C) Feature attributions on the same 5 inputs as in (A), but with the spurious Tag
inputs with a model that has learned a spurious alignment between Pre-Puberty and Tag.

Input

Gradient

SG

IG

GBP

A: Normal Model Spurious Stripe Inputs B: Spurious Stripe Model on ‘Normal’ Inputs C: Spurious Stripe Model on Spurious Stripe Inputs

Figure 4-3: Detecting Spurious Stripe. Here we show in A) Feature attributions for 5
different inputs across the four feature attribution methods with a normal model but with
spurious Stripes inputs; B) Feature attributions on the same 5 inputs as in (A), but without
the spurious Stripe with a model that has learned a spurious alignment between Pre-Puberty
and Stripe; C) Feature attributions on the same 5 inputs as in (A), but with the spurious
Stripe with a model that has learned a spurious alignment between Pre-Puberty and Stripe.
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Input

Gradient

SG

IG

GBP

A: Normal Model Spurious Blur Inputs B: Spurious Blur Model on ‘Normal’ Inputs C: Spurious Blur Model on Spurious Blur Inputs

Figure 4-4: Detecting Spurious Blur. The blur images are analogous to the Tag and
Stripe settings.

Table 4.1: Performance metrics for each attribution method across tasks for the Tag Setting.
Below each metric in the Table is another row (SEM) that indicates the standard error of
the mean for each value.

Bone Age Knee Dog Breeds

Method Grad SG IG GBP Grad SG IG GBP Grad SG IG GBP
K-SSD 0.65 0.66 0.67 0.81 0.51 0.49 0.47 0.76 0.71 0.76 0.79 0.88

K-SSD (SEM) 0.0097 0.013 0.019 0.006 0.012 0.017 0.019 0.023 0.01 0.011 0.014 0.01
CCM 0.37 0.39 0.35 0.75 0.32 0.33 0.35 0.66 0.42 0.41 0.39 0.64

CCM (SEM) 0.0031 0.002 0.015 0.029 0.027 0.023 0.029 0.014 0.013 0.016 0.012 0.015
FAM 0.51 0.55 0.53 0.68 0.46 0.47 0.45 0.69 0.59 0.64 0.68 0.73

FAM (SEM) 0.0029 0.0019 0.018 0.024 0.023 0.024 0.019 0.016 0.015 0.011 0.022 0.035
FAM-GT 0.56 0.53 0.46 0.61 0.42 0.48 0.41 0.63 0.76 0.73 0.77 0.81

FAM-GT (SEM) 0.017 0.035 0.0253 0.028 0.016 0.019 0.0045 0.006 0.011 0.033 0.024 0.0053

Additionally, we also find that the FAM scores are typically higher than the CCM scores

across the tasks. This finding indicates that the feature attribution methods tested are more

susceptible to false positives than they are to indicate to a practitioner that a model is

defective in the absence of the spurious signal, a finding that casts doubt on the utility of

such approaches in practice.

4.2.3 Results for Concept Activation Methods

Overview & Setup. In this setting, we compute the 3 performance metrics of interest:

K-SSD, CCM, and FAM. To measure comparison between two concept rankings, we use a

Kolmogorov-Smirnoff (KS) test comparing two distributions where the null hypothesis is

that the two distributions are identical; we set significance level to be 0.05.

Result. In Figure 4-5, we show TCAV scores for each bone age class for both the spurious

tag and the blur models. In Table 4.2, we show results of the KS-Test across metrics for the

Tag Setting. Here, a X means we reject the null, while an ✓means we are unable to do so at
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Figure 4-5: Concept Results for Normal, Tag, Stripe and Blur Models. TCAV scores
for a model reliant on the spurious Tag and a model reliant on Blur.

the pre-specified significance level. For the K-SSD metric, the KS-test rejects the null for the

Tag and Stripe signals. However, we find that the opposite is the case for the blur signal.

This suggests that concept rankings can help detect reliance on the visible signals but not

non-visible signals when the spurious signals are unknown. However, for the CCM metric, we

are unable to reject the hypothesis that the distribution of concept rankings are not similar

for all spurious signals. This finding suggests that when the spurious signal is unknown, and

we only compare the distributions of known (non-spurious) concepts for a normal model and

a spurious model, there is high similarity. Lastly, a difference in means test as well as a

KS-Test for the FAM measure indicates that the normal models do not rely on the spurious

signals as well. Overall, this finding suggests that TCAV is less susceptible to false positives.
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4.2.4 Results for Training Point Ranking

Table 4.2: Tag Metrics.

Metric Result

K-SSD X

CCM ✓

FAM ✓

Overview & Setup. We now describe our empirical find-

ings for the training point ranking via influence functions

approach. Here we present results for the case where the spu-

rious signal is aligned with the Pre-Puberty class. Results.

The main take away is that given a known spurious signal,

the fraction of top ranked training spurious signal inputs

increases with a spurious model across all of the spurious

signals. While this might seem encouraging, we note that

such increase actually indicates that the ICM metric might provide illusory confidence in a

spurious model. Ultimately, a critical requirement here is knowing what the spurious signal

ahead of time and to be able to select the right inputs to inspect.

4.3 Challenges with Debugging Noisy Training Labels

Table 4.3: Training Point

Ranking

Metric Result

K-SSD X

CCM ✓

FAM ✓

In this section, we study whether feature attribution ap-

proaches are effective for detecting whether a training point

is mislabelled.

Feature Attributions In the setup, we compare attribu-

tions for a training input derived from: 1) a model where

this training input had the correct label, and 2) the same

model settings but trained with this input mislabeled. If the

attributions under these two settings are similar, then such

a method is unlikely to be useful for identifying mislabeled

examples. We observe that attributions for mislabeled examples, across all methods, show

visual similarity.

General Data and Model Setup. We consider a birds-vs-dogs binary classification

task. We use dog breeds from the Cats-v-Dogs dataset [Parkhi et al., 2012a] and Bird species

from the Caltech-UCSD dataset [Wah et al., 2011]. On this dataset, we train a CNN with 5

convolutional layers and 3 fully-connected layers (we refer to this architecture as BVD-CNN

from here on) with ReLU activation functions but sigmoid in the final layer. The model
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achieves a test accuracy of 94-percent.

Bug Implementation. We train a BVD-CNN model on a birds-vs-dogs dataset where

10 percent of training samples have their labels flipped. The model achieves a 93.2, 91.7, 88

percent accuracy on the training, validation, and test sets.

Correct  
Label

Incorrect  
Label

Input

Correct  
Label

Incorrect  
Label

Mislabeled Examples

Figure 4-6: Feature Attributions for noisy label detection.

Results. We find that attributions from mislabelled examples for a defective model

are visually similar to attributions for these same examples but derived from a model with

correct input labels. We find that the SSIM between the attributions of a correctly labeled

instance, and the corresponding incorrectly labeled instance, are in the range 0.73 − 0.99

for all methods tested. These results indicate that the attribution methods tested might be

ineffective for identifying mislabelled examples.

4.4 Challenges with Debugging Parameter Contamination

In this section, we consider model bugs that result from a parameter contamination. Specifi-

cally, we consider the setting where the weights of a model are accidentally re-initialized prior

to prediction. Prior to this work, Adebayo et al. [2018b] considered the same task. They

considered 8 features attribution methods, and tested whether these methods are sensitive to

parameter weights. They found that Guided Backprop Springenberg et al. [2014] is incentive

to re-initialization of the higher layer parameters for ImageNet, and MNIST tasks.

As discussed in Chapter 2, parameter re-intialization of an already trained model is type

of contamination that can result in a model bug, particularly, if done unintentionally. Here,

we extend the sensitivity test to 17 different feature attribution methods. We find that

modified back-propagation methods like Guided Back-Propapagtion (GBP), DConvNet, and

certain variants of the layer relevance propagation (LRP), including Pattern Net(PNet) and

Pattern Attribution (PAttribution) are invariant to higher layer parameters for ImageNet
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and MNIST. In the Chapter epilogue, we further comment on the generality of these findings.

Bug Implementation. We instantiate this bug on a pre-trained VGG-16 model on

Imagenet Russakovsky et al. [2015]. Similar to Adebayo et al. [2018b], we re-initialize the

weights of the model starting at the top layer, successively, all the way to the first layer. We

then compare attributions from these (partially) re-initialized models to the attributions

derived from the original model.

Untrained 
Model

Trained 
model Successive Parameter Re-Initialization

Input

SSIM

Rank Correlation

Figure 4-7: Evolution of several model attributions for successive weights re-
initialization of a VGG-16 model trained on ImageNet. Qualitative results (left) and
quantitative results (right). The last column in qualitative results corresponds to a network
with completely re-initialized weights.

Results: modified back-propagation methods are invariant to higher layer

model parameters of a DNN on ImageNet and MNIST tasks. As seen in Figure 4-7,

the class of modified back-propagation methods, including Guided BackProp, Deconvnet,

DeepTaylor, PatternNet, Pattern Attribution, and LRP-SPAF are visually and quantitatively

invariant to higher layer parameters of the VGG-16 model. This finding corroborates prior

results for Guided Backprop and Deconvnet [Adebayo et al., 2018b, Mahendran and Vedaldi,
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2016, Nie et al., 2018]. These results also support the recent findings of Sixt et al. [2019], who

prove that these modified back-propagation approaches produce attributions that converge

to a rank-1 matrix.

4.5 Challenges with Debugging Out-of-Distribution Inputs

A model is at risk of providing errant predictions when given inputs that have distributional

characteristics different from the training set. To assess the ability of feature attributions to

diagnose domain shift, we compare attributions derived, for a given input, from an in-domain

model with those derived from out-of-domain model. For example, we compare the attribution

for an MNIST digit, derived from a model trained on MNIST, to an attribution for the same

digit, but derived from a model trained on Fashion MNIST, ImageNet, and a birds-vs-dogs

model. We find visual similarity for certain settings: for example, feature attributions for

a Fashion MNIST input derived from a VGG-16 model trained on ImageNet are visually

similar to attributions for the same input on a model trained on Fashion MNIST. However,

the quantitative ranking of the input dimensions are widely different.

Input

Figure 4-8: Fashion MNIST OOD on several models. The first row shows feature
attributions on a model trained on Fashion MNIST. In the subsequent rows, we show feature
attributions for the same input on an MNIST model, BVD-CNN model trained on birds-vs-
dogs, and lastly, a pre-trained VGG-16 model on ImageNet.

Bug Implementation. We consider 4 dataset-model pairs: a BVD-CNN trained

on MNIST, Fashion MNIST, the Birds-vs-dogs data, and lastly a VGG-16 model trained

on ImageNet. We present results on Fashion MNIST. Concretely, we compare 1) feature

attributions of Fashion MNIST examples derived from a model trained on Fashion MNIST,

and 2) feature attributions of Fashion MNIST examples for models trained on MNIST, the

birds-vs-dogs dataset, and ImageNet.

Results. As shown in Figure 4-8, we observe visual similarity between in-domain Fashion

MNIST attributions, and attributions for these samples on other models. As seen in Table 4.4,
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Metric Grad SGrad SGradSQ VGrad Input-Grad IntGrad EGrad LIME KernelSHAP GBP DConvNet LRP-EPS PNet PAttribution LRP-SPAF
SSIM (FMNIST → MNIST Model) 0.7 0.54 0.49 0.92 0.71 0.69 0.71 0.46 0.41 0.81 0.5 0.77 0.58 0.77 0.66

SEM 0.0093 0.012 0.016 0.0047 0.01 0.015 0.01 0.02 0.024 0.014 0.01 0.02 0.026 0.009 0.03
RK (FMNIST → MNIST Model) 0.0013 8.8e-4 0.37 0.37 0.0021 -0.003 0.002 -0.01 0.034 0.51 0.027 0.011 -0.14 0.0082 0.12

SEM 0.0016 0.0032 0.026 0.029 0.002 0.002 0.002 0.04 0.028 0.014 6e-4 0.0034 0.027 0.0026 0.023
SSIM (FMNIST → BVD-CNN) 0.7 0.5 0.55 0.93 0.72 0.7 0.72 0.72 0.72 0.82 0.63 0.79 0.53 0.36 0.66

SEM 0.0083 0.011 0.013 0.0045 0.009 0.013 0.009 0.009 0.01 0.009 0.014 0.019 0.03 0.025 0.035
RK (FMNIST → BVD-CNN) 0.0012 0.0078 0.43 0.25 0.0002 0.002 0.00025 0.18 0.067 0.078 -0.05 -0.013 0.25 -0.0095 0.044

SEM 8.5e-4 0.0017 0.009 0.011 0.0007 0.001 0.0007 0.04 0.034 0.008 0.0011 0.0027 0.045 0.0023 0.02
SSIM (FMNIST → VGG-16 ImageNet) 0.57 0.46 0.5 0.87 0.64 0.67 0.64 0.5 0.38 0.8 0.36 0.64 0.66 0.12 0.2

SEM 0.012 0.011 0.015 0.0056 0.01 0.015 0.011 0.015 0.03 0.009 0.01 0.02 0.018 0.0049 0.024
RK (FMNIST → VGG-16 ImageNet) -0.0023 -0.0098 -0.0097 0.028 -0.0025 -0.0017 -0.0025 0.005 -0.045 0.25 0.03 0.0045 0.32 0.066 0.14

SEM 0.0017 0.0025 0.02 0.018 0.0023 0.0016 0.002 0.033 0.024 0.004 0.0035 0.0018 0.034 0.0053 0.019

Table 4.4: Test-time Explanation Similarity Metrics. We observe visual similarity
but no ranking similarity. We show each metric along with the standard error of the mean
calculated for 190 examples. FMNIST → MNIST model means a comparison of FMNIST
attributions for an FMNIST model with FMNIST attributions derived from an MNIST
model. We present both SSIM and Rank correlation metrics.

we observe visual similarity, particularly for the VGG-16 model on ImageNet, but essentially

no correlation in feature ranking.

4.6 Challenges with Current Tools in Practice: User Study

In this section, we discuss a user study conducted to assess whether practitioners can use

current post hoc explanation tools to detect model bugs. In this study, we consider only

feature attribution methods for the following model bugs 6 model bugs. The primary takeaway

is that users rely on a model’s predictions, instead of the explanations, to detect a model

bug.

General Setup. We consider a 10-way dog breed classification task, which allows

us to leverage prior common knowledge about dogs. Concretely, we assess three model

attribution methods across 7 different model conditions (1 control and 6 model bugs). We

recruited participants, 55 in total (but 54 analyzed; dropped a random participant due to

balancing requirement), a majority with self-assessed prior experience of machine learning,

and asked them to take on the role of a quality assurance tester at a machine learning

startup. Ultimately, each participant was asked to provide their recommendation on whether

a model was fit for sale to external customers based on the model outputs, along with their

attributions.

Datasets. We created a modified combination of the Stanford dogs dataset [Khosla et al.,

2011] and the Oxford Cats and Dogs datasets [Parkhi et al., 2012b] as our primary data source.

We restrict to a 10-class classification task consisting of the following breeds: Beagle, Boxer,

Chihuahua, Newfoundland, Saint Bernard, Pugs, Pomeranian, Great Pyrenees, Yorkshire
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This is the 
prediction of the 
ML on  
the image.

This kind of 
explanation is called a 
heat map. It shows the 
parts of the image that 
the ML relied on to 
make the prediction.

Pick out of these  
choices.

Say why you made  
the choice above.

This is the 
question you 
will answer 
throughout this 
task.

Figure 4-9: Overview of the interface as it was shown to the users.

Terrier, Wheaten Terrier. In total, each class of dogs consists of 400 images in total making

4000 images. We had the following train-validation-test split: (350, 25, 25) images. Each

split was created in an IID manner. The Oxford portion of the Dogs datasets includes a

segmentation map that we used to manipulate the background of the images. The Stanford

dogs dataset includes bounding box coordinates that we used to crop the images for the

spurious versions of the data sets that we created. We consider the following model bugs:

• Normal Model: In this case, we have the standard dataset without alteration. This is

the control.

• (Model parameter bug) Top-Layer: Here we make no changes to the data set, but

re-intialize the DNN model’s top layer.

• (Model parameter bug) Half-Way: Here we re-intialize the top half of a trained model’s

parameters.
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The white portions 
are important parts 
that the ML relied 
on.

Algorithm Explanation

Algorithm Explanation

For the Blue/Red images, the red dots 
are positive evidence, and the blue dots 
are negative evidence.  

In this example, the red dots are 
evidence for why this image is a Beagle. 
The blue dots are evidence for a breed 
other than Beagle.

Figure 4-10: Description of the different attribution signs as it was explained to users.

• (Noisy training labels bug) Random Labels: Here we created a version of the dataset

where all the training labels were randomized. This is an extreme version of the noisy

training label setting.

• (Spurious correlation bug) Partial-Spurious Correlation: Here we created a version of

the dataset where 75 percent of the training images had their backgrounds replaced.

Here a particular class is associated with a single background type. The remaining 25

percent of the training set have regular backgrounds. We provide example images of

the background in Figures 30-34.

• (Spurious correlation bug) Spurious: Here we replace the background on all training

points with the background that was pre-associated with that specific class. Note, here

that we also test on the spurious images as well.

• (OOD bug) Out-of Distribution. Here we apply a normal model on breeds of dogs that

were not seen during training. As expected, the model outputs the wrong predictions

on these inputs.
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Dog Species Associated Spurious Background

Beagle Canyon

Boxer Empyt Room

Chihuahua Blue Sky

Newfoundland Sand Dunes

Saint Bernard Water Fall

Pugs High Way

Pomeranian Track

Great Pyrenees Snow

Yorkshire Terrier Bamboo

Wheaten Terrier Wheat Field

Models. Across all model conditions, we fine-tune a ResNet-50 model for the 10-way

classification task. More specifically, we do not freeze any of the lower layer parameters, but

update them. In each case, except the Random Labels model, we train for 10 Epochs over

the training set. In the case of the random labels model, we train for 20 Epochs. In the

table below, we indicate the model performance on the test-set. In the case of the spurious

and partially-spurious model, their performance is reported on a test set containing similarly

spurious artifacts.

Model Condition Top-1 Test Accuracy

Normal Model 91.0

Top-Layer Random 9.8

Half-Way Random 9.2

Random Labels 11.8

Partial-Spurious Correlation 89.0

Spurious Correlation 99.1

Study Design. As originally noted, the task at hand is that of classifying images of Dogs

into different breeds. We manually selected 10 breeds of dogs based on authors’ familiarity.

All model conditions were trained to perform a 10-way classification task. As part of the

recruitment, participants were directed to an online survey platform (Qualtrics survey).

Once the task was clicked, they were presented a consent form that outlined the aim and
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motivation of the study. We then provided a quick guide on the breeds of dogs the model

was trained on, the set-up, and study interface.

Participants were asked to take on the role of a quality assurance tester at a machine

leaning start-up that sells animal classification models. The goal of the study was then for

them to assess the model, using both the model labels and the attributions provided. For

each condition, each participant was shown images of dogs along with model labels and

attributions for a specific model condition. The participant was then asked: using the

output and explanation of the dog classification model below, do you think this

specific model is ready to be sold to customers? Participants were asked to then

respond on a 5-point Likert scale with options ranging from Definitely Not to Definitely. A

second sub-question also asked participants to provide the motivation for their choice. Taken

together, each participant was asked 21 unique questions and 1 repeat as an attention check.

We include images of the example and interface below.
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Education

EmploymentAge

Figure 4-11: Age, Employment, and Education break-down among participants.

Taken together, this design translates to 3-non-overlapping datasets, with 21 distinctive

items. In order to mitigate learning effects, participants could only see a certain type of

image using one of the model attribution method and manipulation technique. For these
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EthnicityGender

Figure 4-12: Gender, and Ethnicity break-down among participants.

64

Attribution Familiarity

Machine Learning Experience

Figure 4-13: ML Experience and Attribution Familiarity break-down among participants.

reasons, we used a between-group design by dividing participants into three groups. For

each of the 21 datasets, one group saw Gradient method, another saw Integrated Gradients,

and the last saw SmoothGrad with the same manipulation technique applied. We ensured

that each dataset was seen only once by one group, and each group saw exactly 3 model

attribution methods in each of the 7 model conditions.
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Participants and Demographic Information. Here we report on demographic infor-

mation for the participant group that we examine. The age ranges from 18 to 64. The

modal age is 24. A majority of the participants are students and staff at a North-American

institution. Of the 54 participants considered, 26 are female. Combined, the top two groups

of the participants are White and Asian by Ethnicity. We asked participants to self-assess

and report their level of expertise in machine learning. In addition, we asked a simple

test question on the effect of parameter regularization. More then 80% of the participants

reported past experience with machine learning.

Statistical Analysis. We perform a series of statistical tests to assess significance. The

bedrock of our analysis centered on the Oneway Anova along with an All Pairs Tukey-Kramer

test. Given the study design, we perform a one-way Anova for each manipulation condition

since these are separate conditions. Recall that the goal of our study is to understand which

model attributions are effective for identifying specific bugs. Consequently, we perform a

one-way ANOVA for each manipulation and 3 model attribution pair. In total, we perform 7

one-way ANOVA means comparision. In each case, the degrees of freedom is 2, with a total

sample count of 54. We also estimate the lower and upper 95 percent confidence interval for

the Likert means of each model attribution method.

Summary of Findings. As observed in Figure 4-14, we find that across all model

attribution types, users were willing to recommend that a normal model be sold to external

customers. In the case of models with random parameters or one that was trained on

random labels, across all model attribution types, users were able to successfully decline that

the model be sold to external customers. From Figures 4-14, we see that participants are

mostly relying on the labels to make this assessment. This suggests that for a task that

prior knowledge confers domain expertise, the label alone can provide enough signal that

overwhelms the need to inspect the model attributions. For a model trained on completely

spurious data, there doesn’t seem to be a clear definitive take away from the study, as user

recommendations vary widely in this setting. Similarly for the test-time contamination tests.

Taken together, our results suggest that, in the presence of model labels, users are able to

reliably use model attributions to decline to recommend models trained on random labels,

and those with model contamination defects.
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Figure 4-14: Left: Participant Responses from User Study. We show a Box plot of
participants responses across the three different attribution methods: Gradient, SmoothGrad,
and Integrated Gradients, and 7 model conditions. On the vertical axis, we have the user
reported likelihood of recommendation that a model condition be sold to external customers,
from 1 : Definitely Not to 5 : Definitely. We see that across all attribution types, the
participants tend to recommend that a normally trained model be sold to external customers.
Right: Motivation for Recommendation. We show an overview of the breakdown in
motivation according to both attribution and model manipulation type. On the Y axis we have
the Likert recommendation by the participant. Higher means the participants are more likely
to recommend this action. On the X-axis we have the motivation for selecting the different
Likert recommendations. The values on the bars represent the average recommendation for
each motivation. We now provide the legend for the motivation: 1: On some or all of the
images, the dog breed was wrong; 2: The explanation did not highlight the part of the image
that I expected it to focus on; 3: The explanation highlighted the parts of the image that I
expected it to focus on; 4: The dog breeds were correct; & 5: Other, please specify.

4.7 Related Work

Han et al. [2020] demonstrate that training point ranking via influence functions is able

to identify the dependence of an NLP model on dataset artifacts. In addition, they show

correspondence between the insights observed with the input-gradient feature attribution and

the training point ranking. Along similar lines, Guo et al. [2020] present fast approximations

for computing the training point ranking for a test point. In addition, they show how to

identify and correct model errors in a natural language task.

Post hoc explanations, more generally, have been shown to be able to identify a model’s

reliance on spurious training signals [DeGrave et al., 2020, Lapuschkin et al., 2019, Meng

et al., 2018, Ribeiro et al., 2016, Ross et al., 2017]. Recent work by Rieger et al. [2020]

showed that regularizing model attributions during training can help lead to models that

avoid spurious correlation and enable improved debugging by experts. Similarly, Erion et al.

[2019] show that regularizing the expected gradient attribution during training confers similar
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benefits. Koh and Liang [2017] used influence functions to identify domain shift. Kim et al.

[2018] also perform a user study to understand if attribution methods can be used for catch

spurious correlation.

However, similar methods have also been shown to struggle in the hands of end-users for

diagnosing model errors [Alqaraawi et al., 2020]. This contradiction reflects the challenge

that we explore in this work. Often, post hoc explanations have been shown to be effective for

identifying spurious signals that were suspected or known a priori; however, these methods

seem to struggle when confronted with the task of identifying an unexpected spurious signal.

Increasingly, insights into why overparametrized DNNs rely on spurious training set

signals is starting to be theoretically and empirically analyzed [Khani and Liang, 2020,

Nagarajan et al., 2020, Sagawa et al., 2019, 2020], yet it is still unclear how to reliably detect

that a model is relying on such signals prior to model deployment.

Assessing whether a post hoc explanation approach is faithful to the underlying model

being explained has been addressed in recent works, yet this challenge remains elusive [Hooker

et al., 2019, Tomsett et al., 2020]. Generally, the class of approaches that modify back-

propagation with positive aggregation have been shown to be invariant to the higher layer

parameters of a DNN [Adebayo et al., 2018b, Mahendran and Vedaldi, 2016, Nie et al., 2018,

Sixt et al., 2019]. In an intriguing demonstration, Srinivas and Fleuret [2021] show that the

input-gradient, a key feature attribution primitive, might not capture discriminative signals

about input sensitivity. Instead they show that input-gradient likely captures the ability of

the model to be able to generate class-conditional inputs.

User studies are typically the classic approach for evaluating the effective of an explana-

tion [Doshi-Velez and Kim, 2017]. Poursabzi-Sangdeh et al. [2018] manipulate the features of

a predictive model trained to predict housing prices to assess how well end-users can identify

model mistakes. Their results indicate that users found it challenging to debug these linear

models with the model coefficients. Recent work by Chu et al. [2020] and Shen and Huang

[2020] has shown similar results in the DNN setting as well. Alqaraawi et al. [2020] find

that the LRP explanation method improves participant understanding of model behavior for

an image classification task, but provides limited utility to end-users when predicting the

model’s output on new inputs.

Yeh et al. [2020] and Ghorbani et al. [2019b] both present approaches to automatically

discover concepts and quantify a model’s dependence on these concepts. These approaches
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are promising directions for addressing the challenge we identify in this work. Ghorbani

et al. [2019b]’s approach, ACE, segments input images and clusters to discover inherent

clusters. We present some analysis on this approach in the appendix. Critically, this approach

would identify spurious signals that the underlying segmentation algorithm can discover such

the image tag, but not the blur or other visually imperceptible features. Koh et al. [2020]

and Chen et al. [2020] present approaches that learn DNN models whose features inherently

map onto concepts of interest. In this work, we assume the model is given, focusing on

post hoc explanations for models that are not inherently interpretable. Recent work at the

intersection of causal inference and explanations might also open up avenues to help reveal

unexpected confounding, some of which could be unknown spurious signals. Along this

line, [Bahadori and Heckerman, 2021] present an instrumental variable approach for debiasing

concept based explanations that might be confounded. [Kazhdan et al., 2020] present CME,

an approach identify the important concepts that can help improve a model’s performance.

We rely on Guo et al. [2020] for fast approximations for computing the training point

ranking for a test point. In addition, they show how to identify and correct model errors in

a natural language task.However, [Basu et al., 2020] show influence functions for DNNs are

fragile and perhaps inaccurate for deeper networks.

Other recent work has cast doubt on the utility of trying to explain ‘traditionally’ trained

deep network models. For example, [Srinivas and Fleuret, 2021] show that the input-gradient

might not reflect the discriminative capabilities of a DNN, but instead encode for an implicit

density model. More recently, Shah et al. [2021] show that the input and loss gradients

of traditionally trained models do not indicate the important features that a DNN model

relies on for its output—a phenomenon they term feature leakage. Further they show that

adversarially trained models do not exhibit feature leakage. Taken together these results

might explain some of the counter intuitive findings that we observe even when the spurious

signal is known since we only consider non-adversarially trained models in this work. Along

a different direction, Post hoc explanations have been shown to be fragile and very easily

manipulated [Anders et al., 2020, Dombrowski et al., 2019, Ghorbani et al., 2019a, Heo et al.,

2019, Lakkaraju and Bastani, 2020, Slack et al., 2020]. Our work tackles a difference concern:

whether they are suitable for detecting unexpected spurious training set signals.
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4.8 Epilogue

This chapter is focused on empirical assessing post hoc explanation methods in order to better

understand the settings under which they are effective for detecting model bugs [Adebayo

et al., 2020, 2022b, Arun et al., 2021]. One argument against the line of work pursued in

this chapter is that the approaches that we tested were not explicitly designed to address

model debugging. In a lot of the papers that introduced these methods, the goal was to

introduce a general diagnostic tool to better understand model decisions. We agree with

this critique. However, one of the primary motivations for this line of work is that post

hoc explanation methods, in particular, feature attribution approaches in the image setting,

are starting to be used as defacto model debugging tools. However, it is not clear whether

the insights produced by these tools can enable model debugging. The goal of the analysis,

in this chapter, is not to unfairly criticize post hoc explanations, but to subject them to

rigorous tests, and to better understand when conclusions derived from these approaches can

be ‘trusted’.

Limitations. It is important to point out some caveats to our results. First, as with an

empirical work, our insights might not generalize to other tasks, data modalities, or settings

that differ from the one we considered. To demonstrate this limitation, we will consider the

one feature attribution method: Guided Backprop.

For DNNs trained on ImageNet and MNIST, when the higher level layers of the network

is re-initialized, the Guided Backprop feature attribution does not change. At first glance,

this behavior suggests that Guided Backprop should be jettisoned as a feature attribution

method. However, in the spurious signal detection setting, when the signal is known, Guided

Backprop is one of the best performing methods. Indeed, feature attribution methods

that modify the backpropagation process with a positive relu, i.e., zero out the negative

entries of the intermediate matrix vector products, behave this way. In fact, Sixt et al.

[2019] proved a theorem demonstrating this phenomenon. Despite such daming evidence of

ineffectiveness, Yona and Greenfeld [2021] recently demonstrated that Guided Backprop can

be made sensitive to the weights of trained model, on MNIST and ImageNet, for certain

tasks. This means that the effectiveness of an attribution method might be dependent on

the task, model architecture, and other elements in the ML pipeline.

To further drive home the point that an attribution method’s effectiveness might be
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dependent on the task and details of model training, Shah et al. [2021] show that the

input of traditionally trained models do not highlight discriminative features, while those

of adversarially trained model do. This might mean that while the explanation methods

we tested here might not be effective for standard models, they are for adversarially robust

models!

As of the writing of this thesis, the dust on how to effectively assess post hoc explanation

methods has not yet settled.
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Chapter 5

Model Guiding

5.1 Overview

In this section, we present the essence of model guiding. We start with a discussion of why

this kind of approach is needed, and then discuss each component of the model guiding

formulation.

What is missing in our current tools? In the previous chapter, we empirically assessed

different explanation approaches, and ultimately showed that current methods struggle with

detecting spurious signals and mislabelled training examples. Even when current methods

are able to detect the presence of a model bug, they usually provide no avenue to fix the bug.

Model guiding directly aims to address these challenges. First, it aims to enable interaction

between a task expert that wants to audit a machine learning model and the trained model.

Using the model’s output and feature importance estimates as it communication medium,

model guiding uses a well-curated audit dataset to update the parameters of an already

trained model. A second added benefit of model guiding is that it serves as a way for a task

expert to inject more domain knowledge into the model.

Lending Example. Throughout this section, we will use a lending task as way to demon-

strate the method. In the lending task, the goal is to decide the best credit limit for an

individual given the individual’s socio-demographic variables. We assume the input to the

DNN is a collection of all available information from their credit report, pre-processed into

text format, and fed to a DNN with appropriate architecture. The model is then trained
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end-to-end via stochastic gradient descent. The task described is a regression one, and

secondly it uses a DNN as its base model. For pedagogical reasons, we present the model

guiding formulation in the regression setting. With slight modification, the framework can

also be extended to classification tasks; indeed, most of the empirical results we present

in this work are classification tasks. We use a DNN as the base pre-trained model since it

corresponds to the most difficult to address interpretability setting. As we’ll see, simpler

model classes like linear regression fiteasily within the proposed framework.

5.2 Model Debugging with Model Guiding

We now state the high-level model guiding scheme:

Model Guiding Requirements: Given an already trained model, a concept library

provided by a task expert, model guiding uses a small, well-annotated, audit set that

includes:

• carefully checked labels for each sample in the audit set,

• a feature annotation vector that for each sample,

• a vector, for each instance, that indicates how important each feature/concept, in

the global concept dictionary, is;

• a score (between [0-1]), for each sample, that denotes how confident the domain

expert is in their annotation for that sample;

to update the parameters of the already trained model, and propose a new set of training

labels for all training samples, so that:

1. (Requirement 1) the updated model’s prediction, on the audit samples, matches

the labels provided by the domain expert; and

2. (Requirement 2) the updated model’s feature importance scores, on the audit

samples, matches the feature importance scores provided by the domain expert.

We will work up to the entire model guiding scheme. Here, we start with the general

requirements that the proposed scheme needs to satisfy.

At a high level, model guiding uses an audit set to post-process an already trained model,
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Trained Model

Auditor

Application

Income: 70,000
Asset: 25,000

Edu: College
Credit Score: 650

What is the predicted credit limit for this application?
2,000 

Why 2,000? 

Feature Importance Ranking

Zipcode
Income
Asset

Credit Score

No, zip code should not be an 

important feature, income, asset, and 

credit score should be more important.

Feature Importance Ranking

Zipcode
Income
Asset

Credit Score

New Limit: 10,000

Question 1Answer 1

Answer 2

Answer 3

Question 2

Question 3

Figure 5-1: Model debugging as a dialog with an auditor.

so that the model obtained after the post-processing has behavior similar to what a task

expert has annotated on a audit set. The key goal of model guiding is to use the audit set as

a form of ‘unit’ test for the pre-trained model. On this audit set, the task expert has helped

to provide annotations on labels and features that are important for each example. Now,

model guiding then formulates an optimization problem that uses the audit set to both: 1)

detect an already trained model’s mistakes, and 2) fix them. In the rest of this chapter, we

take steps towards making the aforementioned requirements more concrete.

With the high level scheme established, we will now discuss details such as the concept

library, and the audit set.

5.2.1 Model Guiding Pre-Processing Step: Audit Set Annotation & Model

Carving

As stated so far, we have the high-level goal for model guiding. However, before we move to

discussing the mathematical formulation of the proposed objective, we provide an overview

of the pre-cursors that need to be in-place to apply model guiding.

Inputs: The primary inputs that model guiding requires are:
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1. the training set (features and labels), {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1 that was used to train the model

that we want to post-process;

2. an already trained model, 𝑓𝜃 : 𝑥𝑖 → 𝑦𝑖, that maps from the inputs to the output. Here

we will assume that 𝑥 ∈ R𝑑, and 𝑦𝑖 ∈ R. We will sometimes represent the model simply

as 𝜃, the vector of parameters. Later in the chapter, we will discuss how to extend

the setup to classification. We will assume that the model, 𝑓𝜃, consists of an encoder

𝑔 : 𝑥𝑖 → 𝑧𝑖, that maps the input to a latent code, and ℎ : 𝑧𝑖 → 𝑦𝑖, a linear classifier

that maps the latent code into the output label. Consequently, 𝑦𝑖 = 𝑓(𝑥𝑖) = ℎ(𝑔(𝑥𝑖));

3. a set of 𝑚 audit samples, {�̃�𝑖}𝑚𝑖=1, which we term the audit set. The number of examples

in the audit set, 𝑚, should be much smaller than the training set size. In our tasks, 𝑚,

ranged from 25 to 150.

We need the original training set because we will identify inputs with mislabelled examples

in the set. The 𝑚 audit samples will be used to post-process the pre-trained model.

Concept Library. A concept library is simply a list/dictionary of the important features

that an expert has deemed relevant for a task at hand. In the case of the lending example, an

expert might surmise that an individual’s income, asset, credit score, and level education are

features that ought to be important for the task of credit limit estimation. If these concepts

are chosen, then the concept library then consists of the four features listed above. We let 𝑑

be the size of the concept library.

Why do we need a concept library? As we previously noted, the goal of model guiding

is to enable ‘communication’ between a model and a domain expert. However, for this

communication to occur, both the model and the domain expert need a common code

of expression. The concept library serves as such a code. The pre-trained model will

be transformed such that its intermediate representations can be expressed as a weighted

combination of the concepts in the expert pre-specified library.

Audit Data Annotation. Once the concept library has been specified by the task expert,

we will now move to annotate the 𝑚 audit examples. As previously mentioned, the audit

set, {�̃�𝑖}𝑚𝑖=1, will serve as a external unit test for the model, and a way for the domain

expert to further inject prior knowledge into the ML model. As with all unit tests, we will
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need to know the ‘correct answers’. These answers will be in the form of labels and feature

importance scores, for each feature in the correct library, that a task expert expects for a

reliable model. Concretely, the task expert will need to carefully annotate the audit set so

that for each sample in the audit set, we have:

1. A Label, 𝑦𝑖, that indicates what the expected output an ideal ML model should be on

this input. In the lending example, this is the ‘true’ expected credit limit for a credit

report in the audit set.

2. A feature/concept annotation vector, �̃�𝑖, where the domain expert gives the value

of each feature/concept, in the concept library, for that sample. For example, in

the lending scenario previously considered, given an individual, 𝑥𝑖’s credit report, a

possible feature vector is: {“income": 50k USD, “asset": 100k USD, “credit score": 650,

“Education": College}. As expected, the above representation can be easily transformed

into a feature vector.

3. A feature/concept importance vector, 𝑠𝑖, that indicates how important each

concept is for the specific instance in question. In this work, feature importance

takes on 3 possible values: {−1, 0, 1}. A ‘−1’ indicates that the feature is negatively

relevant to the output, a ‘0’ indicates no relevance, while ‘+1’ indicates that the feature

is positively relevant. Building on the lending example above, an example feature

importance vector is: {“income": +1, “asset": +1, “credit score": +1, “Education":

0}, which says that the specific individual’s income, asset, and credit are all positively

relevant towards the credit limit, but education has no relevance. Even though we

ask the domain expert to provide instance level feature importance, it could be the

case that the task is amenable to global feature importance, in which case the domain

expert only provides a single feature importance vector for all samples.

4. A confidence score, 𝑐𝑖 ∈ [0, 1], that indicates the task expert’s level of confidence

regarding their annotation.

To recap, we have now defined a concept library, and also annotated the audit set.

At the end of this process, the audit set, which previously consisted of only of sample

features, {�̃�𝑖}𝑚𝑖=1
annotation−−−−−−→ {�̃�𝑖, 𝑦𝑖, 𝑎𝑖, 𝑠𝑖, 𝑐𝑖}𝑚𝑖=1 has now been annotated with labels, 𝑦𝑖,

concept/feature values, , 𝑎𝑖, feature importance, 𝑠𝑖, and also a sample confidence score.
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Model Carving: Transforming a black-box DNN model into an interpretable one.

The final preliminary step involves converting the black-box DNN model into a concept

bottleneck model (CBM) [Koh et al., 2020]. The goal of this step is to convert the DNN

model, whose representations might be in a basis that the task expert does not understand,

into one that matches the concept library provided by the task expert.

A CBM is a DNN model that requires one of its layers to map directly to human-

interpretable concepts. Revisiting the lending example, the CBM version of the original

DNN will first map the raw inputs to the a concept vector matching income, asset, credit

score, and educational level. The final output is then obtained as a linear model mapping

from the concepts to the label. The goal of the CBM is to ensure that the coefficients of the

higher level concepts can then be interpreted as feature importance for the model. To train

a CBM model, each training input must be annotated with a higher level concept; however,

we don’t have these feature annotations for the entire training set. Instead, we will convert

an already trained DNN model into a CBM one post hoc using the technique of Yuksekgonul

et al. [2022].

We now give a overview of the approach for converting a DNN into a post hoc CBM

model. Instead of annotating the entire training set, the post hoc CBM requires a small,

auxiliary dataset that has been annotated with higher level concepts as a way to convert the

black-box DNN into a CBM.

Let’s define a concept library to be 𝐼 = {𝑖1, 𝑖2, . . . , 𝑖𝑑} with 𝑑 concepts. Using the lending

example, 𝑖1 is the income concept, and 𝑖2 is the asset concept etc. The steps for converting a

black-box model into a post-hoc CBM are as follows:

1. Collect Data: For each concept, 𝑖, in the concept library, if the concept is a binary

variable then collect positive and negative examples for the concept. If the concept is

scalar, then simply collect the scalar annotations for all examples available in the audit

set.

2. Train Model: For binary or categorical concepts, train a linear classifier to distinguish

between positive and negative examples. The features of the classifier are derived

from an embedding layer in the black-box DNN. For concepts with scalar output, like

income, train a linear regression model to predict the output scalar. Let, 𝑓𝑖, be the

function that maps from an input to the label(whether the concept is present or not)
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for an input. Since 𝑓𝑖 is a linear model, it can be represented as, 𝛽⊤
𝑖 �̃�𝑖. The concept

activation vector for concept, 𝑖, is then 𝛽𝑖. We let 𝐵 ∈ R𝑑×𝑙, where each row of 𝐵 is a

concept 𝛽𝑖.

3. Constrain the original model with new basis: Given the matrix, 𝐵, and an input

in the training set, 𝑥𝑖, we can project all these inputs onto the subspace spanned by

the concept matrix. This gives us each input in terms of the interpretable concept

dictionary.

4. Learn the parameters of the new basis: The final step of the conversion process is

to learn a linear model from the concept basis to the output, for all the training points.

We term the parameters of this final model: 𝜃.

With the above steps, we are now able to transform a black-box DNN model into a CBM

that is a composition of an encoder, and a simple linear classifier from the expert-defined

concept space to the labels. Revisiting our lending example, the original DNN model took in

credit reports and directly mapped them to a loan amount. Now the new CBM model takes

in credit reports, maps them to the concept space, i.e. income, asset etc, then a linear model

maps the concepts to the final label.

Summary We have now concluded the setup needed for model guiding. We have annotated

the audit dataset, and also converted a pre-trained DNN into a CBM. With these two pre-

cursors in place, we are now ready to formulate the model guiding objective.

5.2.2 The Bilevel Update: Formulation

We now discuss the core component of model guiding, which is the bilevel optimization

objective that helps update 1) the training labels, and 2) the model parameters using the

well annotated audit dataset.

Based on the model guiding requirements, the bilevel optimization problem can be stated

as follows:

Upper
Level Objective : min

𝛿∈R𝑛;𝜃

Perturbation to
Training label.⏞  ⏟  

𝛾
‖𝛿‖1
𝑛

+

New labels should
be consistent

with original training data.⏞  ⏟  
1

𝑛

𝑛∑︁
𝑖=1

ℓ(𝑥𝑖, 𝑦𝑖 + 𝛿𝑖; 𝜃) +

Match expert’s
labels on
audit set.⏞  ⏟  

1

𝑚

𝑚∑︁
𝑖=1

𝑐𝑖ℓ(�̃�𝑖, 𝑦𝑖; 𝜃) + ‖

Match expert’s
feature importance

annotations
on the audit set.⏞  ⏟  
𝜃 ⊙ �̃�𝑖 − �̃�⊙ 𝑠𝑖‖1;
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Lower
Level Objective s.t. 𝜃 = argmin

𝛽∈R𝑑

1

𝑛

𝑛∑︁
𝑖=1

ℓ(𝑥𝑖, 𝑦𝑖 + 𝛿𝑖; 𝜃).

Upper Level Objective We now consider each term in the upper level objective, and

explain the intuition behind the term’s inclusion.

• 𝛾 ‖𝛿‖1
𝑛 : 𝛿 ∈ R𝑛 represents a small perturbation that is added to a training input’s label.

Given an instance: 𝑥𝑖, whose original label is 𝑦𝑖, after solving the bilevel optimization

problem above, we obtain the new label as: 𝑦𝑖,new = 𝑦𝑖 + 𝛿𝑖. The term, 𝛾 ‖𝛿‖1
𝑛 , is the

average perturbation across all training samples weighted by a hyper-parameter 𝛾. We

seek to learn a perturbation that is as small as possible.

• 1
𝑛

∑︀𝑛
𝑖=1 ℓ(𝑥𝑖, 𝑦𝑖 + 𝛿𝑖; 𝜃): this term ensures that the perturbed labels, 𝑦𝑖,new = 𝑦𝑖 + 𝛿𝑖,

still help minimize the loss on the training set, ultimately resulting in a well-performing

model on the original training data.

• 1
𝑚

∑︀𝑚
𝑖=1 𝑐𝑖ℓ(�̃�𝑖, 𝑦𝑖; 𝜃): This term minimizes the model’s loss on the audit set. The

tuple, (�̃�𝑖, 𝑦𝑖), is a sample from the annotated audit set. This term ensures that the

parameters of the updated model yield predictions, on samples in the audit set, that

match the labels provided by the task expert.

• ‖𝜃 ⊙ �̃�𝑖 − �̃� ⊙ 𝑠𝑖‖1: This term ensures that the parameters of the updated model

yield concept annotations, on the sample in the audit set, that match the concept

annotations provided by the task expert. Here, we note that the notation, ⊙ refers to

the Hadamard (element-wise) product.

Lower level Objective The lower level objective seeks to obtain a set of parameters that

minimize the model’s loss on the perturbed labels.

We have now transformed the requirements of the model guiding scheme into an opti-

mization problem.

5.2.3 Solving a Bilevel Optimization problem

The formulation proposed in the previous section is an example of a bilevel optimization

problem [Colson et al., 2007, Franceschi et al., 2018, Maclaurin et al., 2015]. This is because
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one of the constraints of the objective requires solving an optimization problem. Here we

provide a high level discussion of our approach to solving the bilevel optimization problem

using tools from the literature. To keep the discussion contained, we will mostly discuss our

approach at a high level, and refer the interested reader to additional sources.

Automatic differentiation tools have made it easy to compute gradients needed for

optimization algorithms that minimize a model’s loss. However, these tools typically do not

differentiate through a solver, and it is unclear how such tools can be adapted to solving

bilevel problems. However, as we will discuss later, recent literature on bilevel optimization

has resulted in tools that can similarly differentiate through a solver, akin to how automatic

differentiation tools are able to differentiate a model’s loss. We will return to this later.

Bilevel optimization is now an increasingly useful tool in machine learning for formulating

hyper-parameter optimization. There is an emerging toolbox of approaches for solving these

problem. We provide an overview of these approaches here. This discussion is derived form

the recent work of Blondel et al. [2021] on an automatic bilevel solver, Kolter et al. [2021]’s

Neurips 2021 tutorial on Deep Implicit Layers, and Grosse [2022]’s course notes on bilevel

optimization.

In our discussion, we will consider solving the abstracted bilevel problem specified as

follows: :

Upper
Level Objective : 𝜆* ∈ argmin

𝜆
𝒥upper(𝜆, 𝜃

*)

s.t. Lower
Level Objective : 𝜃* ∈ argmin

𝜃
𝒥lower(𝜆, 𝜃).

The bilevel formulation for model guiding is an instantiation of the above formulation.

Karush-Kuhn-Tucker (KKT) Based Solution. If the lower level problem satisfies

certain regularity conditions (i.e. unconstrained and strongly-convex), then a general strategy

for solving bilevel optimization problems is to replace the lower level problem with its KKT

condition. One can then relate the problem’s solution to the inputs and manually derive the

gradients of the entire relation, which can then be used as part of a gradient descent scheme.

The work of Zhang et al. [2018] that we build upon follows such an approach. However, that

approach can be tedious, and involves manual derivations for every new problem instance.
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Gradient Descent on the Hyper-Gradient The approach we take is to perform

gradient-descent on the hyper-gradient. This will allow us to take advantage of automatic

differentiation tools. In the generic bilevel formulation presented, we seek to solve for 𝜆

via gradient descent, so we need the total gradient of 𝒥 with respect to the optimization

parameter 𝜆. Using the chain rule, this can be expressed as:

𝑑

𝑑𝜆
[𝒥 (𝜆, 𝑟(𝜆))] =

𝜕𝒥
𝜕𝜆

(𝜆, 𝑟(𝜆)) +
𝜕𝑟

𝜕𝜆
(𝜆)⊤

𝜕𝒥
𝜕𝜃

(𝜆, 𝑟(𝜆)).

Based on previous work [Koh and Liang, 2017], we can usually set the first term to

zero [Grosse, 2022]. The term, 𝜕𝑟
𝜕𝜆(𝜆) is known as the response Jacobian, and it measures

how the optimal solution changes due to infinitesimal perturbations to 𝜆. Following Koh and

Liang [2017], we can obtain the formula for the response gradient as:

𝜕𝑟

𝜕𝜆
(𝜆) = −

(︂
𝜕2𝒥
𝜕2𝜃

(𝜆, 𝑟(𝜆))

)︂−1
𝜕2𝒥
𝜕𝜆𝜕𝜃

(𝜆, 𝑟(𝜆)).

The details of the derivation is analogous to the derivation provided in the influence

functions section of Chapter 3, so we skip the details. Note that, 𝜕2𝒥
𝜕2𝜃

(𝜆, 𝑟(𝜆)) is the hessian

matrix: 𝐻. Now, we have a closed-form formula for the hyper-gradient.

Computing the hyper-gradient The hyper-gradient is what we need to optimize the

bilevel formulation via gradient descent. There are broadly two ways for estimating the

hyper-gradient: 1) solving the linear system of equations above with a method like conjugate

gradients or 2) unrolling the inner optimization and then backproping through it. In this

work, we go with the first approach and solve the linear systems of equations. The first

approach is increasingly standard practice in solving bilevel optimization problems.

Automatic Implicit Differentiation. In exciting recent work, Blondel et al. [2021] provide

a way to perform automatic implicit differentiation. Their proposed approach subsumes

the previous discussion. In their formulation, the user provides python expressions of the

bilevel formulation, as well as the optimality conditions. Blondel et al. [2021]’s framework

can the automatically differentiate the optimization problem. Their approach provides a
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clean interface that side-steps some of the challenges discussed above.

Returning to model guiding As it stands, we now know how to solve the bilevel

optimization problem that we formulated. Consequently, we now have all the ingredients

necessary to perform the entire model guiding scheme.

5.2.4 The Model Guiding Scheme

We now discuss the end-to-end model guiding scheme as presented in Algorithm 1.

The Setup & Inputs Recall that model guiding needs the following as inputs: 1) the

pre-trained black-box model 𝜃init, 2) a training set: 𝐷𝑡 = {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1, and 3) the annotated

audit set 𝐷𝑎 = {�̃�𝑖, 𝑦𝑖, �̃�𝑖, 𝑠𝑖, 𝑐𝑖}𝑚𝑖=1. As previously noted, we will assume that the model 𝜃init

is a DNN. The first step, which we term the carving step, is to convert the model, 𝜃init, into

a concept bottleneck model (CBM) as discussed in Section 5.2.1. Recall, that the CBM uses

representations of the model 𝜃init to learn a sparse linear model in the task expert’s provided

concept’s basis. Once a model has been converted into a CBM, for any training input, 𝑥𝑖,

we can obtain its concept representation, 𝑧𝑖, simply by projecting an embedding of the input

onto the concept basis learned in carving step.

Bilevel Update With the inputs setup, the next step is the bilevel update. This step

involves solving the bilevel optimization problem from section 5.2.3. In the problem, the

optimization variables are: 1) the perturbation to the training labels, and 2) an updated

model parameters that is both accurate on the perturbed labels and matches the domain

expert’s annotations on the audit set. Performing the bilevel update returns a perturbation

for the labels as well as a new set of parameters.

Identifying Noisy Label & Spurious Correlation Bugs Based on user provided

tolerance parameters, we can then select the inputs that are mislabelled and for which the

model was relying on spurious signals. The proposed fix is the perturbation added to the

old label. Similarly for spurious signals, we compare the concept attribution of the original

model to the concept attribution of the updated model. The samples for which the change in

attribution is greater than a pre-specified tolerance factor are the inputs for which the model

relies on a spurious signal. These inputs are selected and passed to domain expert to inspect.
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Algorithm 1 Model Guiding
Input : 1) 𝜃init, a black-box model or a concept bottleneck model,

2) the training set, 𝐷𝑡 = {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1, and
3) the annotated audit set: 𝐷𝑎 = {�̃�𝑖, 𝑦𝑖, �̃�𝑖, 𝑠𝑖, 𝑐𝑖}𝑚𝑖=1.

Hyperparameter : 1) 𝜏nl, noisy label tolerance, and
2) 𝜏spu, spurious correlation tolerance,
3) 𝑏 ≪ 𝑛, the inspection budget, which is the maximum number of items
the domain expert can inspect per round.

if 𝜃init is not a concept bottleneck model then

𝜃init
carving−−−−→ 𝜃cbm ; /* 𝜃cbm is a DNN plus a linear model in concept space. */

Initialize: 𝛿𝑖, 𝛾𝑖, 𝐹nl = {}, 𝐹spu = {}, and 𝜃𝑖 = 𝜃cbm
𝛿𝑖+1, 𝜃𝑖+1= BilevelUpdate(𝜃𝑖, 𝛿𝑖)
𝐹nl = {𝑖 | 𝛿𝑖+1 > 𝜏nl} ; /* indices of labels that violate tolerance. */
𝐹spu = {𝑖 | ‖𝜃cbm ⊙ 𝑧𝑖 − 𝜃i+1 ⊙ 𝑧𝑖‖1 > 𝜏spu} ; /* samples that contain spurious
signals, where 𝑧𝑖 is a training label’s concept vector. */

if |𝐹nl| > 𝑏 then
𝐹nl = SortFilter(𝐹nl, b) ; /* Sort the set 𝐹nl by magnitude of the violation
and returns top b. */

if |𝐹spu| > 𝑏 then
𝐹spu = SortFilter(𝐹spu, b) ; /* Sort the set 𝐹spu by magnitude of the violation
and returns top b. */

Send 𝐹spu 𝐹nl to domain expert for inspection.

Modification for Classification Tasks. The formulation we presented here is targeted

to regression tasks, where the output is a scalar. The proposed procedure can also be applied

to classification tasks as well. The output label is no longer a scalar, but a vector, so 𝛿𝑖 will

be represented by a vector on the probability simplex. The newly proposed label will be 𝛿𝑖

and the distance between the old and new label can be measured as 1− 𝛿𝑖,𝑦𝑖 , i.e., how much

the old label changed. The final change to the bilevel program is to require that 𝛿𝑖 sum to 1.

We have now concluded an overview of the model guiding scheme.

5.3 Model Guiding for Spurious Correlation & Noisy Training

Label Bugs

In this section, we will now discuss the empirical performance of model guiding on various

datasets.

Datasets

• Water Birds Dataset([Sagawa et al., 2019]): The waterbirds dataset aims to distinguish
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between land birds and water birds. The dataset is generated by combining images of

birds with landscapes as background. The goal is to classify birds based on whether

they are a land bird or a water bird. The spurious signal in this case is the background

of the image. The dataset comes equipped with concepts that capture various parts of

the bird.

• Dog Breeds Dataset: We created a modified combination of the Stanford dogs

dataset [Khosla et al., 2011] and the Oxford Cats and Dogs datasets [Parkhi et al.,

2012b] as our primary data source. We restrict to a 10-class classification task consisting

of the following breeds: Beagle, Boxer, Chihuahua, Newfoundland, Saint Bernard, Pugs,

Pomeranian, Great Pyrenees, Yorkshire Terrier, Wheaten Terrier. The spurious signals

we consider here are an image tag and a background blur.

• Credit Dataset: The task is to predict the credit limit for each customer given aggregate

demographic and credit information for each customer. We take Gender (Male & Female

in the dataset) to be the sensitive attribute of interest, and focus only on a subset of

high earners (income > 6000 in local currency), and consider a subset of the features:

age, asset, and income. We get two groups: 11,480 males and 2,937 females.

• Bone Age Dataset: This dataset consists of Hand [Halabi et al., 2019] radiographs [Chen

et al., 2019]. We consider the high stakes task of predicting the bone age category

from a radiograph to one of five classes based on age: Infancy/Toddler, Pre-Puberty,

Early/MiD Puberty, Late Puberty, and Post Puberty. This task is one that is routinely

performed by radiologists and as been previously studied with a variety of DNN. The

dataset we use is derived from the Pediatric Bone Age Machine learning challenge

conducted by the radiological society of North America in 2017 [Halabi et al., 2019].

The dataset consists of 12282 training, 1425 validation, and 200 test samples. We

resize all images to (299 by 299) grayscale images for model training. We note here

that the training, validation, and test set splits correspond to similar splits used for

the competition, so we retain this split. The spurious signals we consider here are an

image tag, and a background blur.

Model Across all model conditions, we fine-tuned a ResNet-50 model.
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Dataset Model Guiding Influence Functions DUTI
Dog Breeds 0.77 0.73 0.80
Water Birds 0.90 0.78 0.92
Bone Age 0.85 0.84 0.86

Table 5.1: Performance (Area under the receiver operating curve AUROC) of model guiding
at detecting noisy training labels compared to baselines.

Dataset Model Guiding Influence Functions DUTI
Dog Breeds 0.67 0.60 0.69
Water Birds 0.85 0.72 0.83
Bone Age 0.73 0.61 0.85

Table 5.2: Performance (Area under the receiver operating curve AUROC) of model guiding
at suggesting the correct fix for the noisy training labels compared to baselines.

Detecting & Fixing Noisy Training Labels The first task we evaluate model guiding

against is the ability to detect mislabelled examples in the training set. For each dataset-

model combination we switch the labels of 20 percent of the training set and then train

the resnet-50 model on this modified dataset. We compare model guiding to the following

baselines: Influence Functions( [Koh and Liang, 2017]), and DUTI( [Zhang et al., 2018]).

Table 5.1 shows the AUROC of each method computed for all 20 percent training points.

We see that model guiding outperforms the influence functions approach, and only slightly

underperforms the DUTI method. Model guiding’s formulation is based on DUTI, so the

close performance of both of these approaches is expected. We then turn to the task of

suggesting a fix for the mislabeled example. Specifically, we ask whether the suggested label

fixes are correct. Indeed, we find that model guiding and DUTI perform similarly, and both

of these approaches outperform the influence functions approach. The primary takeaway from

these results are that model guiding matches, DUTI, the current state-of-the-art approach

for correcting label error.

Detecting & Fixing Spurious Correlation We now turn to the task of detecting that a

model is relying on a spurious signal. A common strategy for identifying inputs for which a

model is relying on a spurious signal is to train a simple model (linear or MLP based model)

on the dataset and then use the points that the model makes an error on as the points for

which a model is relying on a spurious signal [Creager et al., 2021]. We term this approach

Errors ERM. This approach is often used as part of a separate strategy for obtaining a

model that is robust to spurious correlation. We decouple these two steps and evaluate them
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Dataset Model Guiding Errors ERM
Dog Breeds 0.89 0.61
Water Birds 0.95 0.71
Bone Age 0.96 0.77
Credit Data 0.84 0.56

Table 5.3: Performance (Area under the receiver operating curve AUROC) of model guiding
at suggesting at detecting examples for which a model is relying on a spurious signal.

Dataset Model Guiding GDRO SSA ERM
Dog Breeds 85.5 63.7 65.3 61.1
Water Birds 93.1 89.2 87.1 72.6
Bone Age 73.0 41.3 48.9 21.6

Table 5.4: The worst-group test set performance of a the post-processed model guiding
approach compared to other baselines.

separately.

In Table 5.3, we show the performance of model guiding compared to Errors ERM. We

find that model guiding outperforms Errors ERM across the datasets considered. In addition,

model guiding also updates the parameters of the pre-trained model in order to stem reliance

on spurious signals. We compare the worst-group accuracy of the updated model to the

performance of state-of-the-art approaches like group distributionally robust optimization

(GDRO)( [Sagawa et al., 2019]), and spread spurious attribute (SSA)([Nam et al., 2022]),

and a baseline ERM model. Across the datasets considered, model guiding outperforms these

approaches.

5.4 Related Work

Why is model guiding effective. In essence, the audit dataset is crucial to the perfor-

mance of model guiding. Clearly, poor feature annotations and labels on the audit set will

further harm the performance of an updated model. Imagine an audit dataset that is a subset

of the exact training dataset, then in this case, the model will not updated. Consequently,

it is critical that the audit set contain new examples, and that the corresponding feature

importance annotations are also accurate.

The model guiding formulation that we present here ([Adebayo and Abelson, 2022]) was

inspired by and builds directly on the DUTI algorithm of Zhang et al. [2018]. Intriguingly,

DUTI formulates model debugging as a bilevel optimization algorithm, and uses an audit
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set to post process a model in order to identify mislabelled training points. Model guiding

departs from this work in critical ways: first, we augment the formulation to also identify

samples for which the model is relying on a spurious signal, a capability DUTI does not enable.

Second, DUTI is tailored to kernel logistic regression Here, we generalize the formulation and

and scaled it to DNNs. Our proposal to match feature annotations has also been previously

used to learn models that align with a task expert’s prior knowledge [Rieger et al., 2020,

Ross et al., 2017].

In general, the model guiding formulation proposed here is an instantiation of machine

teaching [Zhu et al., 2018], where instead of learning from data, the goal is to ‘teach’ a model.

Instead of ‘teaching’ a model from scratch, we ‘guide’ an already trained model. DUTI is

part of recent iteration of debugging approaches that seek to update an already trained

model to either augment it with model debugging capabilities.

Model debugging has become an important problem. A promising direction that is similar

in principle to model guiding is model editing [Bau et al., 2020, Santurkar et al., 2021]. In

model editing, the goal is to localize undesirable behaviors and then use a rank-1 update to

‘erase’ the model’s dependence on the undesirable behavior. Model guiding is similar to that

approach, in principle. The goal is to identify undesirable spurious signals that the model is

relying on, and then use the audit dataset to correct such dependence. The model editing

approach has been scaled to large language models with intriguing results [Meng et al., 2022,

Mitchell et al., 2021, 2022]. Ribeiro and Lundberg [2022] introduced the AdaTest framework

that debugs a large language model using tests generated by another large language model

in a human-in-the-loop manner.

Increasingly, an emerging niche termed data centric AI has also placed model debug-

ging on a central footing [Polyzotis and Zaharia, 2021]. Recent work in this area has

focused on slice discovery—the challenge of finding data groups where the model has low

performance [Eyuboglu et al., 2022].

A key design choice we made is to convert a black-box DNN model into an interpretable

one. We use the approach of Yuksekgonul et al. [2022] to convert DNNs into CBMs. This

design choice aligns with increasing calls to jettison black-box DNNs for interpretable-by-

design approaches [Rudin, 2019]. Towards such end, Ilyas et al. [2022] develop datamodels,

a framework that describes classes of models that map subsets of training inputs to an

output. Similar to CBMs, Wong et al. [2021] train sparse linear models on top of a DNN’s

94



representations and show that the resulting model can be analyzed to more easily explain a

misclassification, and also identify spurious correlation. Singla and Feizi [2021b] introduced

a modified ImageNet dataset that uses a human-in-the-loop routine to detect a model’s

reliance on spurious training signals.

As the discussion in this Chapter suggest, the scope of work targeted at debugging DNNs

is still involving; here, we have limited our scope to work that is directly related to model

guiding.
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Chapter 6

Debugging Fairness Violations with

Influence Functions

6.1 Overview

Label error (noise)— mistakes associated with the label assigned to a data point — in both

training and test data is a pervasive problem in machine learning [Northcutt et al., 2021,

Shepardson, 2019]. Label error often arises as part of the data annotation pipeline and

can be caused by annotators’ lack of familiarity with the task, non-representative sampling,

and feature noise in samples for certain data groups [Goel and Faltings, 2019, Hsueh et al.,

2009]. In this work, we focus on mislabelling that occurs either with the training or test

data—the two key sources of data in an ML pipeline. The broader literature uses the term

label noise—of which label error is a subcategory. Contemporary work has led to approaches

for obtaining accurate models in spite of label errors, such as instance weighting [Jiang and

Nachum, 2020, Ren et al., 2018], robust loss functions [Ghosh et al., 2017, Ma et al., 2020],

or trusted data [Hendrycks et al., 2018].

However, little is known about the effect of label noise on a model’s group-based disparity

metrics like equal odds [Hardt et al., 2016], group calibration [Pleiss et al., 2017], and false

positive rate [Barocas et al., 2019, Garg et al., 2020]. It is now common practice to conduct

‘fairness’ audits (see: [Bakalar et al., 2021, Buolamwini and Gebru, 2018, Raji and Buolamwini,

2019]) of a model’s predictions to identify differential performance across data subgroups.

Label error in the test data used to conduct an audit leads to unreliable group-based disparity
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metrics. Similarly, label error in the training data, especially if systematically more prevalent

in certain data subgroups, can lead to models that associate such erroneous labels to these

groups. The reliability of a fairness audit rests on the assumption that labels are accurate;

yet, the sensitivity of a model’s disparity metrics to label error is still poorly understood.

Here we address the aforementioned challenge via the following questions:

1. Research Question 1: What is the sensitivity of a model’s disparity metric to label

errors in training and test data? Does the effect of label error vary based on group

size?

2. Research Question 2: How can a practitioner identify training points whose labels

have the most ‘influence’ on a model’s group disparity metric for a test dataset?

Contributions & Summary of Findings. Towards these questions, we make two broad

contributions: First, we conduct comprehensive empirical sensitivity tests across several

datasets and model classes to quantify the impact of labels errors—for test and training

data—on a series of disparity metrics. Second, we propose a method, based on the influence

function, to identify training points that have a high effect on a model’s test disparity metric.

Empirical Sensitivity Tests. We assess the sensitivity of model disparity metrics to

label errors with a label flipping experiment. First, we iteratively flip the labels of samples

in the test set, for a fixed model, and then measure the corresponding change in the model

disparity metric compared to an unflipped test set. Second, we fix the test set for the fairness

audit but flip the labels of a proportion of the training samples. We then measure the change

in the model disparity metrics for a model trained on the data with flipped labels. We

perform these tests across datasets and model combinations.

Training Point Influence on Disparity Metric. We propose an approach, based on

a modification to the influence of a training example on a test example’s loss(Koh and Liang

[2017]), to identify training points whose labels have undue effects on any disparity metric of

interest on the test set. We empirically assess the proposed approach on a variety of datasets

and find a 10-40% improvement, compared to alternative approaches like RDIA (Kong et al.

[2021]) that focus solely on model’s loss, in identifying training inputs that improve a model’s

disparity metric.
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6.2 Setup & Background

In this section, we discuss notation, and set the stage for our contributions by discussing the

disparity metrics that we focus on. We also provide an overview of the datasets and models

used.

Overview of Notation. We consider prediction problems, i.e, settings where the task

is to learn a mapping, 𝜃 : 𝒳 ×𝒜 → 𝒴, where 𝒳 ∈ R𝑑 is the feature space, 𝒴 ∈ {0, 1} is the

output space, and 𝒜 is a group identifier that partitions the population into disjoint sets e.g.

race, gender. We term the tuple, (𝑥𝑖, 𝑎𝑖, 𝑦𝑖), 𝑧𝑖, which means the 𝑛 training points can be

written as: {𝑧𝑖}𝑛𝑖=1. Throughout this work, we will only consider learning via empirical risk

minimization (ERM), which corresponds to: 𝜃 := argmin𝜃∈Θ
1
𝑛

∑︀𝑛
𝑖 ℓ(𝑧𝑖, 𝜃). We assume that

the ERM objective is twice-differentiable and strictly convex in the parameters.

A few of the metrics we select require binning the probabilistic output of the classifier.

Consequently, we can group predictions into 𝑀 interval bins (each size 1/𝑀) and calculate

the accuracy of each bin. Let 𝐵𝑚 be the set of indices of samples whose prediction confidence

falls into the interval 𝐼𝑚 = [𝑚−1
𝑀 , 𝑚

𝑀 ]. Here the accuracy of 𝐵𝑚 is then: acc(Bm) =

1
|𝐵𝑚|

∑︀
𝑖∈𝐵𝑚

1(𝑦𝑖 = 𝑦𝑖), where 𝑦𝑖 is the true label for sample 𝑥𝑖 derived from a model 𝜃 with

prediction 𝑦𝑖 = 𝜃(𝑥𝑖). Similarly, we can define the average confidence within a bin 𝐵𝑚 as:

conf(Bm) =
1

|𝐵𝑚|
∑︀

𝑖∈𝐵𝑚
𝑝𝑖.

Disparity Metrics. We define a group disparity metric to be a function, 𝒢𝒟, that gives

a performance score given a model’s probabilistic predictions (𝜃 outputs the probability of

belonging to the positive class) and ‘ground-truth’ labels. We consider the following metrics:

1. Calibration: defined as P (𝑦 = 𝑦|𝑝 = 𝑝) ,∀𝑝 ∈ [0, 1]. In this work, we measure calibra-

tion with two different metrics: 1) Expected Calibration Error (ECE) [Naeini et al., 2015,

Pleiss et al., 2017], and 2) the Brier Score [Rufibach, 2010] (BS). ECE approximates a

notion of miscalibration, so it is defined as: 𝒢𝒟ece =
∑︀𝑀

𝑚=1
|𝐵𝑚|
𝑛 |conf(Bm)− acc(Bm)|,

while the Brier Score is the mean squared error between the labels and a models’

predicted probabilities: 𝒢𝒟bs =
∑︀𝑛

𝑖=1(𝑦𝑖 − 𝑦𝑖)
2. We report results for the ECE in the

main text, and defer Brier Score results to the appendix.

2. (Generalized) False Positive Rate (FPR): is 𝒢𝒟fpr(𝜃) = E[𝜃(𝑥𝑖) | 𝑦𝑖 = 0]

(see [Guo et al., 2017]),

99



Dataset Classes 𝑛 𝑑 Group Source
CivilComments 2 1, 820, 000 768 Sex Koh and Liang [2017]
ACSIncome 2 195, 665 10 Sex, Race Ding et al. [2021]
ACSEmployment 2 378, 817 16 Sex, Race Ding et al. [2021]
ACSPublic Coverage 2 138, 554 19 Sex, Race Ding et al. [2021]
Credit Dataset 2 405, 032 6 Sex De Montjoye et al. [2015]

Table 6.1: Dataset characteristics. 𝑛 is the training set size and 𝑑 is the number of features.

3. (Generalized) False Negative Rate (FNR): is 𝒢𝒟fnr(𝜃) = E[(1− 𝜃(𝑥𝑖)) | 𝑦𝑖 = 1],

4. Error Rate (ER): is the 𝒢𝒟er(𝜃) = 1− acc(𝜃).

We consider these metrics separately for each group, 𝑎𝑖, in the data as opposed to relative

differences. We do this because we are primarily interested in the behavior of these metrics

as more label error is induced either in the test or training data.

Datasets. We consider datasets across different modalities: 3 tabular, and a text dataset.

A description of these datasets is provided in Table 6.1. Each dataset contains annotations

with a group label for both training and test data, so we are able to manipulate these labels for

our empirical sensitivity tests. We assume that the provided labels are the ground-truth—a

strong assumption that nevertheless does not impact the interpretation of our findings.

Model. We consider three kinds of model classes in this work: 1) a logistic regression

model, 2) a Gradient-boosted Tree (GBT) classifier for the tabular datasets, and 3) a ResNet-

18 model for the text data. These three classes of models allow us to also test whether

the sensitivity of a model’s disparity metric depends on the amount of overparametrization

and the model class (i.e. Tree-based models vs Neural Networks). We refer readers to the

Appendix for details of model training and hyper-parameters.

6.3 Empirical Assessment of Label Sensitivity

In this section, we perform empirical sensitivity tests to quantify the impact of label error

on test group disparity metrics. We report here results on a logistic regression model for

subgroup calibration error (ECE), and provide a high-level summary of other results.

We conduct tests for two different stages of the ML pipeline: 1) Test-time (test dataset)

and 2) Training-time (training data). The test and training set are the two data sources;

hence, the settings where label error could affect the ML model pipeline. We use as our
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primary experimental tool: label flipping, i.e., we flip the labels of a percentage of the samples

uniformly at random in either the test or training set and then measure the concomitant

change in the model calibration.

We assume that each dataset’s labels are the ground truth and that flipping the label

results in label error for the samples whose labels have been overturned. Recent literature

has termed this setting synthetic noise, i.e., the label flipping simulates noise that might not

be representative of real-world noise in labels [Arpit et al., 2017, Jiang et al., 2020, Zhang

et al., 2021]. For example, it could be the case that label error is more likely for certain kinds

of data. In real-world datasets, there is often uncertainty in the training labels themselves

that might not be distributed uniformly across samples.

6.3.1 Test-time Label Sensitivity

Overview & Experimental Setup. The goal of the Test-time empirical tests is to measure

the impact of label error on the group calibration error of a fixed model. Consider the

setting where a model has been trained, and a fairness assessment is to be conducted on the

model. What impact does label error, in the test set used to conduct the audit, have on the

calibration error on the test data? The test-time empirical tests answer this question. Given

a fixed model, we iteratively flip a percentage of the labels, uniformly at random, ranging

from zero to 30 percent in the test data. We then estimate the model’s calibration using

the modified dataset. Critically, we keep the model fixed while performing these tests across

each dataset.

Results. In Figure 6-1, we show results of the label flipping experiments across 6 datasets.

On the horizontal axis, we have the percentage of labels flipped in the test dataset, while on

the vertical axis, we have the percentage change in the model’s calibration. For each dataset,

we compute model calibration for two demographic groups in the dataset, the majority and

the minority—in size–groups. We do this since these two groups constitute the two ends of

the spectrum in the dataset. As shown, we observe a more distinctive effect for the minority

group across all datasets. This is to be expected since flipping even a small number samples

in the minority group can have a dramatic effect on test and training accuracy within this

group. For both groups, we observe a super-linear effect on the calibration error. For example,

for the Income prediction task on the Adult dataset, a 10 percent label error induces a 20

percent change in the model’s test calibration error. These results suggest that test-time
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Figure 6-1: Test-time Label Flipping Results across 6 datasets. For each dataset, we
plot the percent change in calibration error versus the corresponding percentage change in
label error. Here, we plot the minority (smallest) group as well as the majority (largest)
group. These two groups represent two ends of the spectrum for the impact of label error.
We observe that across all datasets, the minority group incurs higher percentage change in
group calibration compared to the majority group.

label error has more pronounced effects for minority groups. Further, these results imply

that - for calibration error - one can expect a change at least as large as the percentage of

label error present in the test dataset.

6.3.2 Training-time Label Sensitivity

Overview & Experimental Setup. The goal of the training-time empirical tests is to

measure the impact of label error on a trained model. More specifically, given a training

set in which a fraction of the samples’ labels have been flipped, what effect does the label

error have on the calibration error compared to a model trained on data without label

error? We simulate this setting by creating multiple copies of each of the datasets where a

percentage of the training labels have been flipped uniformly at random. We then assess the

model calibration of these different model using the same fixed test dataset. Under similar

experimental training conditions for these models, we are then able to quantify the effect of

training label error on a model’s test calibration error.

Results & Implications We show the results of the training-time experiments in

Figure 6-2. Similar to the test-time experiments, we observe a higher sensitivity for the

minority groups. A conjecture for the higher sensitivity to extreme training-time error is that
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Figure 6-2: Training-time Label Flipping Results across 6 datasets. For each dataset,
we plot the percent change in calibration error versus the corresponding percentage change
in label error for the training set. Here, we plot the minority (smallest) group as well as the
majority (largest) groups by size. Similar to the test-time setting, we observe that across all
datasets, the minority group incurs higher percentage change in group calibration compared
to the majority group. However, we observe a larger magnitude change for the minority
groups.

a model trained on significant label error might have a more difficult time learning patterns

in the minority class where there are not enough samples to begin with. Consequently, the

generalization performance of this model worsens for inputs that belong to the minority

group. Alternatively, in the majority group, the proportion of corrupted labels due to label

error is smaller. This might mean that uniform flipping does not affect the proportion of

true labels compared to the minority group. Even though the majority group exhibits label

error, there still exists enough samples with true labels such that a model can learn the

underlying signal for the majority class. Additionally, we observe a lower sensitivity for the

overparametrized ResNet-18 model, which might imply that overparameterization might

add resilience to label training error. We discuss these findings for the other metrics in the

Appendix as well.

6.4 Identifying ‘Fairness Violations’ with Influence Functions

In this section, we present an approach for estimating the ‘influence’ of perturbing a training

point’s label on a disparity metric of interest. The approach is based on a modification to

the influence functions method of Koh and Liang [2017]. We consider two primary effects: 1)

up-weighting a training point, and 2) perturbing the training label.

103



Upweighting a training point. Let 𝜃−𝑧𝑖 be the ERM solution when a model is trained

on all data points, {𝑧𝑗}𝑛𝑗=1, except 𝑧𝑖. The influence, ℐup,params, of datapoint, 𝑧𝑖, on the

model parameters is then defined as the change: 𝜃−𝑧𝑖 − 𝜃. This measure indicates how much

the parameters change when the model is ‘refit’ on all training data points except 𝑧𝑖. Koh

and Liang [2017] give a closed-form estimate of this quantity as:

ℐup,params
def
=

𝑑𝜃𝜖, 𝑧𝑖
𝑑𝜖

⃒⃒⃒⃒
𝜖=0

= −𝐻−1

𝜃
∇𝜃ℓ(𝑧𝑖, 𝜃), (6.1)

where 𝐻 is the hessian, i.e., 𝐻𝜃

def
= 1

𝑛

∑︀𝑛
𝑖=1∇2

𝜃ℓ(𝑧𝑖, 𝜃).

The loss on a test example, ℓ(𝑧𝑡, 𝜃), is a function of the model parameters, so using the

chain-rule, we can estimate the influence, ℐup,loss(𝑧𝑖, 𝑧𝑡), of a training point, 𝑧𝑖, on ℓ(𝑧𝑡, 𝜃) as:

ℐup,loss(𝑧𝑖, 𝑧𝑡) def
=

𝑑ℓ(𝑧𝑡, 𝜃𝜖, 𝑧𝑖)

𝑑𝜖

⃒⃒⃒⃒
𝜖=0

= −∇𝜃ℓ(𝑧𝑡, 𝜃)
⊤𝐻−1

𝜃
∇𝜃ℓ(𝑧𝑖, 𝜃). (6.2)

Perturbing a training point’s label. A second notion of influence that Koh and Liang

[2017] study is how perturbing a training point leads to changes in the model parameters.

Specifically, given a training input, 𝑧𝑖, that is a tuple (𝑥𝑖, 𝑦𝑖), how would the perturbation,

𝑧𝑖 → 𝑧𝑖,𝛿, which is defined as (𝑥𝑖, 𝑦𝑖) → (𝑥𝑖, 𝑦𝑖 + 𝛿), change the model’s predictions? Koh and

Liang [2017] give a closed-form estimate of this quantity as:

ℐpert,loss,y(𝑧𝑗 , 𝑧𝑡) ≈ −∇𝜃ℓ(𝑧𝑡, 𝜃𝑧𝑗,𝛿,−𝑧𝑗 )
⊤𝐻−1

𝜃
∇𝑦∇𝜃ℓ(𝑧𝑗 , 𝜃). (6.3)

Adapting influence functions to group disparity metrics. We now propose modifica-

tions that allow us to compute the influence of a training point on a test group disparity

metric. Let 𝑆𝑡 be a set of test examples. We can then denote 𝒢𝒟(𝑆𝑡, 𝜃) as the group disparity

metric of interest, e.g., the estimated ECE for the set 𝑆𝑡 given parameter setting 𝜃.

Influence of upweighting a training point on a test group disparity metric. A

group disparity metric on the test set is a function of the model parameters; consequently,

we can apply the chain rule to ℐup,params (from Equation 6.1) to estimate the influence,
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ℐup,disparity, of up-weighting a training point on the disparity metric as follows:

ℐup,disparity(𝑧𝑖, 𝑆𝑡)
def
=

𝑑𝒢𝒟(𝑆𝑡, 𝜃𝜖, 𝑧𝑖)

𝑑𝜖

⃒⃒⃒⃒
𝜖=0

= −∇𝜃𝒢𝒟(𝑆𝑡, 𝜃)
⊤𝑑𝜃𝜖, 𝑧𝑖

𝑑𝜖

⃒⃒⃒⃒
𝜖=0

,

= −∇𝜃𝒢𝒟(𝑆𝑡, 𝜃)
⊤𝐻−1

𝜃
∇𝜃ℓ(𝑧𝑖, 𝜃). (6.4)

We now have a closed-form expression for a training point’s influence on a test group disparity

metric.

Influence of perturbing a training point’s label on a test group disparity

metric. We now consider the influence of a training label perturbation on a group disparity

metric of interest. To do this, we simply consider the group disparity metric as the quantity

of interest instead of the test loss. Consequently, the closed-form expression for the influence

of a modification to the training label on disparity for a given test set is:

ℐpert,disparity,y(𝑧𝑗 , 𝑆𝑡) ≈ −∇𝜃𝒢𝒟(𝑆𝑡, 𝜃)
⊤𝐻−1

𝜃
∇𝑦∇𝜃ℓ(𝑧𝑗 , 𝜃). (6.5)

With Equations 6.4 and 6.5, we have the key quantities of interest that allows us to rank

training points, in terms of influence, on the test group disparity metric. We can then use

these quantities to prioritize samples that should be more carefully inspected.

6.5 Empirical Assessment

In this section, we empirically assess the modified influence expressions for calibration across

these datasets for prioritizing mislabelled samples. We find a 10-40 percent improvement,

compared to alternative approaches that estimate influence on test loss [Kong et al., 2021].

Overview & Experimental Question. We are interested in surfacing training points

whose change in label will induce a concomitant change in a test disparity metric like group

calibration. Specifically, we ask: When the training points are ranked by influence on test

calibration, are the most highly influential training points most likely to have the wrong

labels? We conduct our experiments to directly measure a method’s ability to answer this

question.

Experimental Setup. For each dataset, we randomly flip the labels of 10 percent of the
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training samples. We then train our standard logistic regression classifier on this modified

dataset. In this task, we have direct access to the ground-truth and knowledge of the exact

samples whose labels were flipped. This allows us to directly compare the performance of our

proposed methods to each of the baselines on this task. We then rank training points using

a number of baseline approaches as well as the modified influence approaches. For the top 50

examples, we consider what fraction of these examples had flipped labels in the training set.

Approaches & Baselines. We consider the following methods: 1) IF-Calib: The

closed-form approximation to the influence of a training point on the test calibration; 2)

IF-Calib-Label: The closed-form approximation to the influence of a training point’s label

on the test calibration; 3) Loss: A baseline method which is the training loss evaluated

at each data point in the training set. The intuition is that, presumably, more difficult

training samples will have higher training loss; and Training Point Influence of Test

Loss (IF-Norm): A baseline method which is the (average) training point influence of the

each training sample on the test loss for all examples in the test set of interest.
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Figure 6-3: Empirical Results for Training Point Ranking Across 6 datasets. For
the top 50 most influential examples, we show the proportion of samples whose labels were
flipped in the training data. Confidence intervals is computed for N=5 different models.

Results: Prioritizing Samples. In Figure 6-3, we show the performance of the two

approximations that we consider in this work as well as two baselines. We plot the fraction

of inputs, out of the top ranked 50 ranked training points, whose labels were flipped in the

training set. The higher this proportion, then the more effective an approach is in identifying

the samples that likely have wrong labels. In practice, the goal is to surface these training

samples and have a domain expert inspect them. If a larger proportion of the items to be
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inspected are mislabeled, then a higher proportion of training set mistakes, i.e. label error,

can be fixed. Across the different datasets, we find a 10-40 percent improvement, compared

to baseline approaches, in identifying critical training data points whose labels need to be

reexamined.

We find the loss baseline to be ineffective for ranking in our experiments. A possible

reason is that modern machine learning models can typically be trained to ‘memorize’ the

training data; resulting in settings where a model has low loss even on outliers or mislabeled

examples. In such a case, ranking by training loss for a sample is an ineffective ranking

strategy.

6.6 Related Work

This discussion in this chapter is based on Adebayo et al. [2022a].

Impact of Label Error/Noise on Model Accuracy. Learning under label error

falls under the category more commonly known as learning under noise [Bootkrajang and

Kabán, 2012, Frénay and Verleysen, 2013, Natarajan et al., 2013]. Noise in learning can

come from different components of the underlying data generation process, which include the

input features and the labels. In this work, we focus exclusively on categorization mistakes

associated with the label of a training input, which we term label error. Model resilience to

training label error has been studied for both synthetic [Arpit et al., 2017, Rolnick et al.,

2017, Zhang et al., 2021] and real-world noise settings [Jiang et al., 2020]. Along these lines,

a major line of inquiry is the development of mitigation strategies; these seek to produce

accurate models and learning algorithms that are resilient to training label error. These

strategies can be in the form of model regularization [Srivastava et al., 2014, Zhang et al.,

2017], bootstrap [Reed et al., 2014], knowledge distillation [Jiang et al., 2020], instance

weighting [Jiang and Nachum, 2020, Ren et al., 2018], robust loss functions [Ghosh et al.,

2017, Ma et al., 2020], or trusted data [Hendrycks et al., 2018]. In contrast to this line of

work, instead of making the model resilient to label error, we take the approach of finding

the ‘problematic’ training points, whose careful relabeling will most likely improve a model’s

disparity metric.

Impact of Label Error on Model ‘Fairness’. This work contributes to the burgeoning

area that studies the impact of label error on a model’s ‘fairness’ (termed ‘group-based
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disparity’ in this paper) metrics. Fogliato et al. [2020] studied a setting in which the labels

used for model training are a noisy proxy for the true label of interest, e.g., predicting rearrest

as a proxy for rearrest. Wang et al. [2021] introduce a method to account for group-dependent

label noise by using new surrogate loss functions that weight group-based disparity metrics.

Similarly, Konstantinov and Lampert [2021] study the effect of adversarial data corruptions

on fair learning in a PAC model and show impossibility results under the adversarial model.

Jiang and Nachum [2020] propose a re-weighting scheme that is able to correct for label

noise. They then show that training a classifier on the re-weighted objective recovers models

with group-disparity properties similar to a model trained on the unobserved noiseless labels.

Influence Functions & Their Uses. Influence functions originate from robust statistics

where it is used as a tool to identify outliers [Cook, 1986, Cook and Weisberg, 1982, Hampel,

1974]. Koh and Liang [2017] introduced influence functions for modern machine learning

models, and used them for various model debugging tasks. Most similar to our work, Kong

et al. [2021] propose RDIA, a relabelling scheme based on the influence function that is able

to provably correct for label error in the training data. RDIA identifies training samples

whose change in label has a high influence on the test loss for a validation set; however,

we focus on identifying training samples whose change in label has a high influence on a

group-disparity metric on a test/audit set.

In recent work, De-Arteaga et al. [2021] study expert consistency in data labeling and

use influence functions to estimate the impact of labelers on a model’s predictions. Along

similar direction, Brunet et al. [2019] adapt the influence function approach to measure

how removing a small part of a training corpus, in a word embedding task, affects test bias

as measured by the word embedding association test [Caliskan et al., 2017]. Feldman and

Zhang [2020] use influence functions to estimate how likely a training point is to have been

memorized by a model. More generally, influence functions are gaining widespread use as a

tool for debugging model predictions [Barshan et al., 2020, Han et al., 2020, Pruthi et al.,

2020, Yeh et al., 2018].

Low Performance Subgroup Identification We use influence functions to identify

training points that have the most effect on the model’s disparity metric; however, there are

other approaches for surfacing training points that need to be prioritized. For example, Kim

et al. [2019] propose an algorithm to identify groups in the data where a model has high test

errors, and to ‘boost’ the model performance for these groups. Similarly, Creager et al. [2021]
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propose a two-stage scheme to identify critical subgroups in the data when demographic

labels are not known ahead of time. Our approach differs from the aforementioned since we

focus principally on the effect to the model’s disparity metric instead of the test loss.

Label Flipping. We use labeling flipping as a primary tool in our empirical tests to

measure the sensitivity of a model’s disparity metrics to label error. Label flipping has also

previously been used for alternative purposes [Arpit et al., 2017, Zhang et al., 2021]. In now

seminal work, Zhang et al. [2021] used label flipping and shuffling to show that deep neural

networks easily memorize data with random labels. More generally, label flipping can also

constitute an ‘adversarial attack’ against an ML model, for which there are increasingly new

methods to help defend against such attacks [Rosenfeld et al., 2020].

Explainability Increasingly, ‘explanations’ derived from a trained model can point to

the reason why an input has been misclassified. Ultimately, one holy grail use-case for

explanations has been help identify and suggest potential fixes for model performance

disparities. Towards this end, Pradhan et al. [2021] propose an approach that intervenes

on the training data and measures the changes to downstream performance on the basis of

these changes.

109



110



Chapter 7

Conclusion

In the lead up to DeepMind’s famous Go match against Lee Seedol, members of the AlphaGo

team invited Fan Hui, the European Go champion, to help test AlphaGo. A version of

AlphaGo had played against Fan Hui, in October 2015, and defeated him.

Regarding the experience Fan Hui said:

I played with AlphaGo to understand where is the strong points of AlphaGo

and where is maybe the weakness. I played in the morning, afternoon, all

time. And I find something, I find big weakness about AlphaGo. It’s a big

one [Kohs].

In response to Fan Hui’s finding, David Silver, the team lead said,

We can think of there being the space of all the things it [AlphaGo] knows about.

And it knows about most of it extremely well, but there will be these tricky lumps

of knowledge that it understands very poorly. It is really hard for us to

characterize when it is going to enter into one of these lumps. But if it does, it can

be completely delusional, thinking that it is alive in one part of the board, but in

fact is dead or vice versa. There is a real risk that we could lose the match. [Kohs]

Ultimately, the AlphaGo team didn’t fix the weakness before the Lee Sedol match. Since,

the techniques underlying AlphaGo have been extended to AlphaFold [Jumper et al., 2021]

for learning protein structure. Similarly, foundation models [Bommasani et al., 2021], DNNs

with billions of parameters trained in a self-supervised manner, can now generate coherent

text [Brown et al., 2020], and images [Ramesh et al., 2021, 2022] with remarkable ingenuity.
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Would it be acceptable if AlphaFold or these Foundation Models had poorly understood

hidden weaknesses? Despite tremendous progress in the capabilities, the ability to debug

these systems lags behind.

Thesis Goals. Towards addressing the challenge, this thesis take steps towards developing

tools that are effective for model debugging. We addressed the following two questions:

1. Of the post hoc explanation methods available, which ones are effective for model

debugging?

2. Second, given the limitations of current approaches, can we develop model debugging

approaches that can incorporate expert expertise via interaction?

Key Thesis Contributions. We make the following contributions:

1. Part I: Empirical Assessment of Current Methods. We show that current

approaches struggle to detect a model’s reliance on spurious signals, are unable to

identify training inputs with wrong labels, and provide no direct avenue for fixing

model errors.

2. Part II: New tools for model debugging. In the second part of the thesis, we

introduce two new approaches that directly address the limitations of current methods.
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Figure 7-1: Hypothetical model debugging workflow.

A model debugging Ideal In software development, it is now standard practice to

perform automated testing before deploying software. These tests often catch critical bugs.

The hope is that the practice of ML model development will also approach reliability levels

similar to the practice of software development. As shown in Figure 7-1, a future where

a trained model is (semi)automatically tested, and the model bugs in its ML pipeline are

easily detected and fixed prior to deployment would be ideal. This thesis takes a step in that

direction.
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Appendix A

Chapter 4 Appendix: Challenges

In chapter, we provide additional details regarding the results presented in Chapter 4.

A.1 Experimental Details for Spurious Correlation

Feature Attributions: Implementation. We implement all of these methods from

scratch in the PyTorch framework and also compare our implementations to the output of

the Captum (PyTorch) library.

Concept-Based Approaches. We now discuss additional implementation details of our

concept based approach. We select the TCAV approach to quantify the sensitivity of a

DNN model’s class score to user provided inputs represent a particular class. Given hidden

representations, ℎ𝑙, from a particular layer of a DNN for for images belonging to concept

class 𝐶. We can derive the sensitivity score as: ∇ℎ𝑙,𝑘(𝑓𝑙(𝑥)).𝜃
𝑙
𝑐. The previous expression

indicates the sensitivity of the class score (logit) for class 𝑘 to inputs indicating concept,

𝐶, given hidden representations from layer 𝑙 from the DNN 𝑓 . The concept vector, 𝜃𝑙𝑐,

typically corresponds to a the weights of a linear classifier trained to separate the images for

a particular concept class from or images.

In the bone-age task, we consider clinical concepts. These are the representative clinical

attributes that a radiologist would inspect to ascertain the bone age of a particular input.

These concepts are: DIP, PIP, MCP, Radius, Ulna, and Wrist.
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Concept Implementation. To compute the TCAV score for each concept, we collect

representations from all hidden ‘layers’ of the model and train linear models to obtains the

concept vector for the corresponding attribute. We then compute the class sensitivity score

for each concept attribute. We train the linear model 100 times and perform statistical

significance testing in order to mitigate the case where a spurious concept is selected. For

each concept class, we use 325 images that part of the training, validation, or test sets. These

new set of images were annotated by a board certified radiology with the clinical bone age

regions (MCP, PIP, DIP etc) that we chose.

Influence Functions for Training Point Ranking. The final kind of interpretation that

we consider is training point ranking via influence functions. In the case of training point

ranking via influence functions, we rank the training samples, in terms of ‘influence’, on the

loss of a test example. Specifically, if we up-weighted a training point and retrained the model,

then by how much would the loss on a given test example change? Koh and Liang [2017]

analytically derive the analytically formulas for computing this quantity. Given a test point, 𝑥𝑡,

the influence of a training point, 𝑥𝑖, on the test loss is: 𝐼(𝑥𝑡, 𝑥𝑖) = −∇𝜃ℓ(𝑥𝑡, 𝜃)
⊤𝐻−1

𝜃
∇𝜃ℓ(𝑥𝑖, 𝜃),

where 𝐻 is the empirical Hessian of the loss.

Estimating the influence requires computing hessian-vector products, so it can be difficult

to scale to model with large number of parameters, and recent work has shown that influence

estimate for test points for deep networks can be inaccurate due to non-convexity [Basu

et al., 2020]. Consequently, we estimate influence on a linear model student network trained

to mimic the original DNN. We empirically verify that the predictions of the student network

seem to mimic the original DNN.

Implementation Details. There are two other training point ranking methods that we

also consider in this work [Pruthi et al., 2020, Yeh et al., 2018]. For 150 inputs in the test set,

we compare the Spearman rank correlation of the training point due to Influence Functions

to these other two approaches. We obtain mean values of 0.88, and 0.76 respectively, which

suggests high similarity amongst these approaches. Ultimately, we chose to present the main

results in the draft for the training point ranking due to influence functions approach.

We rely on the fast influence heuristic of [Guo et al., 2020] to speed up the influence

ranking computations. We were able to obtain a 5-10X speed in doing so. In addition, we
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trained a student multi-class logistic regression model to mimic the original model for each

model we want to compute influence for. Here for all training points, we collect embeddings

across all layers and pass these embedding through a random projection to obtain a 1000-

dimensional approximation. We then train linear models to mimic the original deep network

using these features. The correlation between the output of the student models and the

original teacher models was found to be 0.87. Ultimately, we went with the fast influence

implementation of [Guo et al., 2020].

Knee Dataset We also consider the high stakes task of predicting the Kellgren and

Lawrence (KL) grade of osteoarthritis based on Knee Xrays. The KL grade ranges from the

integers 0 to 4; 5 classes, so we treat it as a classification task. The Knee Radiographs are

obtained from the open source release by Chen et al. [2019] and consists of 5778 training

samples, 826 validation samples, and 1656 test samples. Again here, we follow Chen et al.

[2019] data splits. The images were resized to be 299 by 299 pixels.

Dog Dataset The third dataset that we use in this work is the dog breed classification

dataset that is a combination of Stanford dogs dataset Khosla et al. (2011) and the Oxford

Cats and Dogs datasets Parkhi et al. (2012b) following Adebayo et al. [2020]. Similarly, we

restrict our attention to 10 dog classes: Beagle, Boxer, Chihuahua, Newfoundland, Saint

Bernard, Pugs, Pomeranian, Great Pyrenees, Yorkshire Terrier, Wheaten Terrier. Instead

of the background spurious signal ofAdebayo et al. [2020], we focus instead on the three

spurious signals tested in this work.

Models We consider two different kinds of models: i) a small vanilla DNN based on Raghu

et al. [2019], and a Resnet-50 model. The small DNN consists of: conv-relu-batchnorm-

maxpooling operation successively, and two fully connected layers at the end. All convolutional

kernels have stride 1, and kernel size 5. We train this model with SGD with momentum (set

to 0.9) and an initial learning rate of 0.01. We use a learning rate scheduler that decays the

learning rate every 10 epochs by 𝛾 = 0.1.

Hyper-Parameter Tuning for Model Training We used the Ray Tune library for

hyper-parameter tuning of all the models used in this work. For the ResNet-50, we tuned

with Ray, but the best performing models retained the default parameter settings. In the
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case of the Small DNN model, we tune the batch size, and learning rate with the validation

set.

A Note about random seeds and Model Runs. We train 5 models each (different

random seeds) for each category and in the following tables the average performance metrics

for these models. We found that the standard error of the mean for typically between

0.01− 0.05, so we omit these in the tables to improve readability.
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A.2 Experimental Details Mislabelled Examples, Weight-Reinitialization,

& Out-of-Distribution Robustness

Here we provide a detailed overview of the data set and models used in our experiments.

Birds-Vs-Dogs Dataset. We consider a birds vs. dogs binary classification task for all the

data contamination experiments. We use dog breeds from the Cats-v-Dogs dataset Parkhi

et al. [2012a] and Bird species from the caltech UCSD dataset Wah et al. [2011]. These

datasets come with segmentation masks that allows us to manipulate an image. All together,

this birds-vs-dogs dataset consists of 10k inputs (5k dog samples and 5k bird samples). We

use 4300 data points per class, 8600 in total for training, and split the rest evenly for a

validation and test set.

Modified MNIST and Fashion-MNIST Datasets. For the test-time contamination

tests, we modify the MNIST and Fashion-MNIST datasets to have 3 channels and derive

attributions from this three-channel version of MNIST from a VGG-16 model.

ImageNet Dataset. We use two 200 images from the ImageNet Russakovsky et al. [2015]

validation set for the model contamination tests.

User Study Dogs Only Dataset. For the user study alone, we restrict our attention to

10 dog classes. We used a modified combination of the Stanford dogs dataset Khosla et al.

[2011] and the Oxford Cats and Dogs datasets Parkhi et al. [2012b]. We restrict to a 10-class

classification task consisting of the following breeds: Beagle, Boxer, Chihuahua, Newfoundland,

Saint Bernard, Pugs, Pomeranian, Great Pyrenees, Yorkshire Terrier, Wheaten Terrier. We

are able to create spurious correlation bugs by replacing the background in training set

images. We consider 10 different background images representing scenes of: Water Fall,

Bamboo Forest, Wheat Field, Snow, Canyon, Empty room, Road or Highway, Blue Sky, Sand

Dunes, and Track.

BVD-CNN For the data contamination tests, we consider a CNN with 5 convolutional

layers and 3 fully-connected layers with a ReLU activation functions but sigmoid non-linearity

in the final layer. We train this model with an Adam optimizer for 40 epochs to achieve test
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accuracy of 94-percent. For ease of discussion, we refer to this architecture as BVD-CNN.

We use a learning rate of 0.001 and the ADAM optimizer. This is the standard BVD-CNN

architecture setup that we consider.

User Study Model. Here we use a ResNet-50 model that was fine-tuned on the dogs

only dataset to generate all the attributions for the images considered. Please see public

repository for model training script.

A.2.1 Mislabelled Examples

Bug Implementation. We train a BVD-CNN model on a birds-vs-dogs dataset where 10

percent of training samples have their labels flipped. The model achieves a 94.2, 91.7, 88

percent accuracy on the training, validation and test sets. We show additional examples in

later paper of the supplemental material.

A.2.2 Weight Re-initialization

The model contamination tests capture defects that occur in the parameters of a model.

Here, we consider the simple setting where a model is accidentally reinitialized during or

while it is being used. As expected, such a bug will lead to observable accuracy differences.

However, the goal of these classes of tests, especially in the model attribution setting, is

to ascertain how well a model attribution is able to identify models in different parameter

regimes.
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A.3 Additional Details on Mislabelled Examples

In this section, we present additional figures for the mislabelled examples bug.
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Figure A-1: Feature Attributions for Mislabeled examples.
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Figure A-2: Feature Attributions for Mislabeled examples.
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Figure A-3: Feature Attributions for Mislabeled examples.
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A.4 Additional Details on User Study

We now present additional images that show the samples used as part of the user study

conducted in Chapter 4.

Normal Model: Gradient

Figure A-4: Saliency Maps for a Normal Model: Gradient.
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Normal Model: SmoothGrad

Figure A-5: Saliency Maps for a Normal Model: SmoothGrad.
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Normal Model: Integrated Gradients

Figure A-6: Saliency Maps for a Normal Model: Integrated Gradients.
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Top Layer Random : Gradient

Figure A-7: Saliency Maps for a Top layer Random Model: Gradient.

Top Layer Model Random: SmoothGrad

Figure A-8: Saliency Maps for a Top layer Random Model Model: SmoothGrad.
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Top Layer Random: Integrated Gradients

Figure A-9: Saliency Maps for a Top layer Random Model Model: Integrated
Gradients.

Spurious : Gradient

Figure A-10: Saliency Maps for a Spurious Model: Gradient.
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Spurious: SmoothGrad

Figure A-11: Saliency Maps for a Spurious Model: SmoothGrad.

Spurious: Integrated Gradients

Figure A-12: Saliency Maps for a Spurious Model: Integrated Gradients.
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Out of Distribution : Gradient

Figure A-13: Saliency Maps for Out-of-Distribution Examples: Gradient.
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Appendix B

Chapter 6 Appendix: Influence

Functions

B.1 Appendix: Datasets, Models, & Experimental Details

We provide additional details.

B.1.1 Datasets

We start with a discussion of the datasets used in this work.

Text Toxicity Classification we use a publicly available dataset from JIGSAW called

the unintended bias in toxicity classification dataset. The TC dataset contains a subset of

comments from the ‘Civil Comments’ platform that have been annotated by human raters

for level of toxic severity. For example, a comment can be tagged as ‘benign’, ‘obscene’,

‘threat’, ‘insult’, or ‘sexually explicit’ among several categories. A given text is then indicated

as ‘toxic’ or ‘not toxic’ on the basis of these tags. The task here is a binary classification one,

which is to categorize an input text as either toxic or not.

To obtain the toxicity labels, each comment was shown to up to 10 annotators. Annotators

were asked to:“Rate the toxicity of this comment": Very Toxic, Toxic, Hard to Say, and Not

Toxic. These ratings were then aggregated with the target value representing the fraction of

annotations that annotations fell within the former two categories.

To collect the identity labels, annotators were asked to indicate all identities that were

mentioned in the comment. An example question that was asked as part of this annotation
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effort was:“What genders are mentioned in the comment?": Male, Female, Transgender,

Other Gender, and No gender mentioned. We consider the Gender variable to be the sensitive

attribute of interest.

For the dataset, we taken of the raw sentence text and convert them into embedding

vectors using the XLM-R models obtaining a vector, for each sentence, that is 768 dimensional.

We then further reduce the input dimension of this vector from 768 to 50 via a random

projection. We make this reduction to make computing the hessian of the loss function of

the logistic regression model trained on this data easy to compute. The 50-dimensional

embedding is then used as input for our analyses.

Adult Census Dataset we use a series of tabular datasets more broadly called the ‘Adult

Dataset’. Specifically, we consider a recently revamped version of the dataset introduced

by Ding et al. [2021], which is derived from the broader US Census. We consider the following

tasks among the compilation of datasets available in this database:

1. ACSIncome Prediction, where the task is to predict whether an individual has an

income above 50000 USD;

2. ACSIncome Prediction (25k) where the task is to predict whether an individual has an

income above 25000 USD;

3. ACSEmployment Prediction, where the task is to predict whether the adult individual

is employed; and

4. ACSPublic Coverage: where the task is to predict whether a low-income individual has

coverage from public health insurance.

The adult dataset comes annotated with race categories, which we take as the key demographic

variable in our analyses. We restrict our analyses to data from year 2018 for the state of

California across all datasets.

Credit Dataset : a dataset of financial transactions that consists of aggregate demographic

and credit information for customers of a large commercial bank. For each customer,

information includes their gender, marital status, educational level, employment status,

income, age, and asset. Using this information, the bank estimates probability of default on
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loan for each customer (a scalar between 0 and 1). We consider the prediction of the default

probability as our primary focus. The dataset comes with gender as a sensitive attribute for

two categories: Male and Female. While this dataset is not publicly available—it is hosted

by the first author’s institution, it has been used as part of previous work studying financial

well-being classification.

B.1.2 Models

All but one of the datasets we consider are tabular, and mostly low-dimensional. We

implement the logistic regression model in PyTorch. We tuned the batch size using the

validation set in the range [16, 32, 64, 128] across all datasets, but did not observe substantial

across differences, so we set default batch size to be: 128. We use the SGD plain optimizer

with a default learning rate of 0.001, we train the all models for 20 epochs. We adapat the

standard GBT implementation for sklearn, and standard Resnet-18 from PyTorch to our

setting.

B.1.3 Additional Discussion on ECE

The principal metric that we consider in this work is group calibration. We also consider

other group-based metrics such as true-positive and false negative rates. Let 𝑦𝑖 = ℎ(𝑥𝑖) be

the output of a trained model of interest for input 𝑥𝑖. The output can either be an output

probability for a binary prediction or a class prediction in a multi-class setting. We denote

the ground-truth confidence or probability of correctness as 𝑝𝑖. We say ℎ is calibrated if 𝑝𝑖

represents a true probability. As an example, if given 100 predictions with confidence 0.95,

then if ℎ is calibrated, 95 of these predictions should be correct given ground-truth labels.

Several recent works have also studied model calibration and found that modern neural

network models are uncalibrated. Guo et al. [2017] found that a simple temperature based

Platt-scaling post processing was the most effective technique. While the literature abound

with disparity metrics, several of which provide conflicting and often counter-intuitive insights

simultaneously, group calibration has emerged as a useful metric in practice Pleiss et al.

[2017].

There are a variety of metrics for quantifying a model’s level of calibration. In this work,

we measure calibration with using the metric: Expected Calibration Error (ECE) Naeini et al.

[2015]. A calibration metric summarizes the difference between the empirical distribution of
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a model’s prediction and the ground-truth probabilities for a perfectly calibrated classifier.

Here, perfect calibration is defined as:

P (𝑦 = 𝑦|𝑝 = 𝑝) , ∀𝑝 ∈ [0, 1].

In practice, the quantity above is impossible to compute, so previous literature made

empirical approximations. We follow binning the approach by Guo et al. [2017]. To estimate

the accuracy empirically, we group predictions into 𝑀 interval bins (each of size 1/M)

and calculate the accuracy of each bin. Across all experiments, we take 𝑀 = 10—recent

work Küppers et al. [2020] found this default setting effective across a range of datasets. We

discuss this choice in more detail in the appendix. Let 𝐵𝑚 be the set of indices of samples

whose prediction confidence falls into the interval 𝐼𝑚 = [𝑚−1
𝑀 , 𝑚

𝑀 ]. Here the accuracy of 𝐵𝑚

is then:

acc(Bm) =
1

|𝐵𝑚|
∑︁
𝑖∈𝐵𝑚

1(𝑦𝑖 = 𝑦𝑖),

where 𝑦𝑖, and 𝑦𝑖 are the predicted and true class labels for data sample 𝑖.

The ECE is the absolute difference in expectation between confidence and accuracy. We

can define the average confidence within a bin 𝐵𝑚 as:

conf(Bm) =
1

|𝐵𝑚|
∑︁
𝑖∈𝐵𝑚

𝑝𝑖,

where 𝑝𝑖 is the confidence for sample 𝑖. Consequently, a perfectly calibrated model will have

accuracy and confidence equal for all bins.

A notion of miscalibration is then which is the difference in expectation between confidence

and accuracy.

The ECE approximates the above notion of miscalibration, and is defined as:

𝑀∑︁
𝑚=1

|𝐵𝑚|
𝑛

|conf(Bm)− acc(Bm)|.
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We use ECE as the primary metric of miscalibration in this work. As we will see, we will

compare ECE metrics across various data groups to help identify input groups where a model

is miscalibrated.

For the TC dataset, we obtain embedding vectors, 768 dimensional, for all samples using

the XLM-R, a state of the art multi-lingual model Conneau et al. [2019]. We then further

reduce the input dimension of this vector from 768 to 50 via a random projection. We make

this reduction to make computing the hessian of the loss function of the logistic regression

model trained on this data easy to compute. The 50-dimensional embedding is then used as

input for our analyses. Across all datasets, we take 70 percent of each dataset for training

and model validation, while we keep 30 percent as a holdout set for computing the disparity

metrics. For the 70 percent portion, we reserve 20 percent as validation set.
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